Solving a second-order nonlinear singular perturbation ordinary differential equation by a Samarskii scheme

被引:5
|
作者
Zadorin A.I. [1 ]
Tikhovskaya S.V. [1 ]
机构
[1] Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, ul. Pevtsova 13, Omsk
来源
Zadorin, A. I. (zadorin@ofim.oscsbras.ru) | 1600年 / Maik Nauka Publishing / Springer SBM卷 / 06期
基金
俄罗斯基础研究基金会;
关键词
Newton method; Picard method; Samarskii scheme; second-order nonlinear ordinary differential equation; Shishkin grid; singular perturbation; two-grid algorithm; uniform convergence;
D O I
10.1134/S1995423913010023
中图分类号
学科分类号
摘要
A boundary value problem for a second-order nonlinear singular perturbation ordinary differential equation is considered. A method based on Newton and Picard linearizations using a modified Samarskii scheme on a Shishkin grid for a linear problem is proposed. It is proved that the difference schemes are of second-order and uniformly convergent. To decrease the number of arithmetic operations, a two-grid method is proposed. The results of some numerical experiments are discussed. © 2013 Pleiades Publishing, Ltd.
引用
收藏
页码:9 / 23
页数:14
相关论文
共 50 条