Positive solutions for one-dimensional third-order p-Laplacian boundary value problems

被引:0
|
作者
Yan Sun
机构
[1] Shanghai Normal University,Department of Mathematics
关键词
cone; existence; positive solution; maximum principle; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give improved results on the existence of positive solutions for the following one-dimensional p-Laplacian equation with nonlinear boundary conditions: {(ϕp(y″))′+b(t)g(t,y(t))=0,0<t<1,λ1ϕp(y(0))−β1ϕp(y′(0))=0,λ2ϕp(y(1))+β2ϕp(y′(1))=0,y″(0)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} (\phi_{p} ( y'' )) ' + b ( t ) g ( t, y ( t ) ) = 0, \quad 0 < t < 1, \\ \lambda_{1}\phi_{p} ( y ( 0 ) ) - \beta_{1} \phi_{p} ( y' ( 0 ) ) = 0, \\ \lambda_{2}\phi_{p} ( y ( 1 ) ) + \beta_{2} \phi_{p} ( y' ( 1 ) ) = 0,\qquad y'' ( 0 ) = 0, \end{cases} $$\end{document} where ϕp(s)=|s|p−2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi_{p} ( s ) = | s | ^{ p-2 } s$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p >1 $\end{document}. Constructing an available integral operator and combining fixed point index theory, we establish some optimal criteria for the existence of bounded positive solutions. The interesting point of the results is that the term b(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b ( t ) $\end{document} may be singular at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=0$\end{document} and/or t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t=1$\end{document}. Moreover, the nonlinear term g(t,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g(t, y)$\end{document} is also allowed to have singularity at y=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$y=0$\end{document}. In particular, our results extend and unify some known results.
引用
收藏
相关论文
共 50 条