Effect of charge on the maximum mass of the anisotropic strange quark star

被引:0
|
作者
A Saha
K B Goswami
B Das
P K Chattopadhyay
机构
[1] Coochbehar Panchanan Barma University,Department of Physics
[2] Alipurduar College,Department of Physics
来源
Pramana | / 97卷
关键词
Strange star; compact object; Bag constant; anisotropy; electromagnetic field; 04.20.Jb; 04.20.-q; 95.30.Sf;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we have studied the solutions of Einstein–Maxwell field equations for compact objects in the presence of net electric charge. Interior physical 3-space is defined by Vaidya–Tikekar metric in spheroidal geometry. The metric is characterised by two parameters, namely, spheroidal parameter K and curvature parameter R. The nature of the interior fluid is considered to be anisotropic. Assuming strange matter equation of state (EOS) in the MIT Bag model for the interior matter content, namely, p=13(ρ-4B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\frac{1}{3}(\rho -4B)$$\end{document}, where B is the Bag constant, we determine various physical properties of the charged compact star. We have taken the value of surface density ρs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{s}$$\end{document}(=4B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(=4B)$$\end{document} as a probe to evaluate the mass–radius relation for the compact star in the presence of net electric charge and using the range of B necessary for possible stable strange matter. It is interesting to note that in this model there exist a maximum radius of a star which depends on B. We further note that compactness of the star corresponding to the maximum radius always lies below the Buchdahl limit (<49)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(<\frac{4}{9})$$\end{document} for the maximum allowed value of the pressure anisotropy and electromagnetic field. Energy and causality conditions hold good throughout the star in the presence of charge also. Prediction of mass of the strange stars is possible in the present model. We have determined mass, radius, surface red-shift and other relevant physical parameters of the compact objects.
引用
收藏
相关论文
共 50 条
  • [1] Effect of charge on the maximum mass of the anisotropic strange quark star
    Saha, A.
    Goswami, K. B.
    Das, B.
    Chattopadhyay, P. K.
    PRAMANA-JOURNAL OF PHYSICS, 2022, 97 (01):
  • [2] Maximum mass of charged strange quark star in presence of strange quark mass (ms)
    Saha, A.
    Goswami, K. B.
    Roy, R.
    Chattopadhyay, P. K.
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [3] Strange quark mass (ms) dependent model of anisotropic strange quark star
    A.Hakim
    K.B.Goswami
    P.K.Chattopadhyay
    Chinese Physics C, 2023, (09) : 149 - 165
  • [4] Strange quark mass (ms) dependent model of anisotropic strange quark star
    Hakim, A.
    Goswami, K. B.
    Chattopadhyay, P. K.
    CHINESE PHYSICS C, 2023, 47 (09)
  • [5] Anisotropic strange quark star in Finch-Skea geometry and its maximum mass for non-zero strange quark mass(ms≠0)
    B.Das
    K.B.Goswami
    A.Saha
    P.K.Chattopadhyay
    Chinese Physics C, 2023, (05) : 201 - 216
  • [6] Anisotropic strange quark star in Finch-Skea geometry and its maximum mass for non-zero strange quark mass (ms ? 0)
    Das, B.
    Goswami, K. B.
    Saha, A.
    Chattopadhyay, P. K.
    CHINESE PHYSICS C, 2023, 47 (05)
  • [7] Dependence of maximum mass of strange star on finite strange quark mass (ms ≠ 0)
    Goswami, K. B.
    Saha, A.
    Chattopadhyay, P. K.
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (17)
  • [8] New class of anisotropic charged strange quark star in Durgapal IV metric and its maximum mass
    Sarkar, S.
    Bhattacharjee, D.
    Goswami, K. B.
    Chattopadhyay, P. K.
    ASTROPHYSICS AND SPACE SCIENCE, 2024, 369 (02)
  • [9] Strange quark mass dependence of strange quark star properties
    Bo-Lin Li
    Yan Yan
    Jia-Lun Ping
    The European Physical Journal C, 2021, 81
  • [10] Strange quark mass dependence of strange quark star properties
    Li, Bo-Lin
    Yan, Yan
    Ping, Jia-Lun
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (10):