On locally trivial Ga-actions

被引:0
|
作者
J. K. Deveney
D. R. Finston
机构
[1] Virginia Commonwealth University,Department of Mathematical Sciences
[2] New Mexico State University,Department of Mathematical Sciences
关键词
Open Subset; Complex Number; Topological Group; Additive Group; Factorial Variety;
D O I
10.1007/BF01235937
中图分类号
学科分类号
摘要
If the additive group of complex numbers acts algebraically on a normal affine variety, then the associated ring of invariants need not be finitely generated, but is an ideal transform of some normal affine algebra (Theorem 1). We investigate such normal affine algebras in the case of a locally trivial action on a factorial variety. If the variety is a complex affine space and the ring of invariants is isomorphic to a polynomial ring, then the action is conjugate to a translation (Theorem 3). Equivalently, ifCn, is the total space for a principalGa-bundle over some open subset ofCn−1 then the bundle is trivial. On the other hand, there is a locally trivialGa-action on a normal affine variety with nonfinitely generated ring of invariants (Theorem 2).
引用
收藏
页码:137 / 145
页数:8
相关论文
共 50 条
  • [1] Locally trivial Ga-actions on C5 with singular algebraic quotients
    Jaradat, Imad
    Finston, David
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (11) : 4992 - 5001
  • [2] PROPER GA-ACTIONS
    FAUNTLEROY, A
    MAGID, AR
    DUKE MATHEMATICAL JOURNAL, 1976, 43 (04) : 723 - 729
  • [3] SEPARATED GA-ACTIONS
    MAGID, AR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 76 (01) : 35 - 38
  • [4] Ga-actions and completions
    Miyanishi, Masayoshi
    JOURNAL OF ALGEBRA, 2008, 319 (07) : 2845 - 2854
  • [5] Geometrically pure Ga-actions
    Miyanishi, Masayoshi
    JOURNAL OF ALGEBRA, 2024, 648 : 1 - 8
  • [6] Ga-ACTIONS ON AFFINE CONES
    Kishimoto, Takashi
    Prokhorov, Yuri
    Zaidenberg, Mikhail
    TRANSFORMATION GROUPS, 2013, 18 (04) : 1137 - 1153
  • [7] Ga-ACTIONS ON THE COMPLEMENTS OF HYPERSURFACES
    Park, Jihun
    TRANSFORMATION GROUPS, 2022, 27 (02) : 651 - 657
  • [8] SEPARATING INVARIANTS FOR THE BASIC Ga-ACTIONS
    Elmer, Jonathan
    Kohls, Martin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (01) : 135 - 146
  • [9] Affine threefolds admitting Ga-actions
    Gurjar, R., V
    Koras, M.
    Masuda, K.
    Miyanishi, M.
    Russell, P.
    MATHEMATISCHE ANNALEN, 2019, 373 (3-4) : 1211 - 1236
  • [10] QUASI-AFFINE SURFACES WITH GA-ACTIONS
    FAUNTLEROY, A
    MAGID, AR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (03) : 265 - 270