On the average box dimensions of graphs of typical continuous functions

被引:0
|
作者
B. Adam-Day
C. Ashcroft
L. Olsen
N. Pinzani
A. Rizzoli
J. Rowe
机构
[1] University of Leeds,School of Mathematics
[2] DPMMS,Department of Mathematics
[3] Centre for Mathematical Sciences,Mathematical Institute
[4] University of St. Andrews,Department of Mathematics
[5] University of Oxford,School of Mathematics and Statistics
[6] Imperial College,undefined
[7] University of Glasgow,undefined
来源
Acta Mathematica Hungarica | 2018年 / 156卷
关键词
box dimension; continuous function; Hölder mean; Cesàro mean; Riesz–Hardy mean; Baire category; 28A78; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a bounded subset of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} ^{d}}$$\end{document} and write Cu(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C_{\mathsf{u}}(X)}$$\end{document} for the set of uniformly continuous functions on X equipped with the uniform norm. The lower and upper box dimensions, denoted by dim̲B(graph(f))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{\rm dim}_{\mathsf{B}}({\rm graph}(f))}$$\end{document} and dim¯B(graph(f))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\rm dim}_{\mathsf{B}}({\rm graph}(f))}$$\end{document}, of the graph graph(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm graph(f)}$$\end{document} of a function f∈Cu(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in C_{\mathsf{u}}(X)}$$\end{document} are defined by dim̲B(graph(f))=limδ↘0inflogNδ(graph(f))-logδ,dim¯B(graph(f))=limδ↘0suplogNδ(graph(f))-logδ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\underline{\rm dim}_{\mathsf{B}}({\rm graph}(f))} = {\lim_{\delta \searrow 0} {\rm inf}} {\frac{{\rm log} N_{\delta}({\rm graph}(f))}{-\rm log \delta}},\\ {\overline{\rm dim}_{\mathsf{B}}({\rm graph}(f))} = {\lim_{\delta \searrow 0} {\rm sup}} {\frac{{\rm log} N_{\delta}({\rm graph}(f))}{-\rm log \, \delta}},\end{aligned} $$\end{document}where Nδ(graph(f))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N_{\delta}({\rm graph}(f))}$$\end{document} denotes the number of δ-mesh cubes that intersect graph(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm graph(f)}$$\end{document}.
引用
收藏
页码:263 / 302
页数:39
相关论文
共 50 条
  • [1] On the average box dimensions of graphs of typical continuous functions
    Adam-Day, B.
    Ashcroft, C.
    Olsen, L.
    Pinzani, N.
    Rizzoli, A.
    Rowe, J.
    [J]. ACTA MATHEMATICA HUNGARICA, 2018, 156 (02) : 263 - 302
  • [2] On the box dimensions of graphs of typical continuous functions
    Hyde, J.
    Laschos, V.
    Olsen, L.
    Petrykiewicz, I.
    Shaw, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (02) : 567 - 581
  • [3] AVERAGE BOX DIMENSIONS OF TYPICAL COMPACT SETS
    Olsen, Lars
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 141 - 165
  • [4] Graphs of continuous functions and fractal dimensions
    Verma, Manuj
    Priyadarshi, Amit
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 172
  • [5] Hausdorff and Box dimensions of continuous functions and lineability
    Bonilla, A.
    Munoz-Fernandez, G. A.
    Prado-Bassas, J. A.
    Seoane-Sepulveda, J. B.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (04): : 593 - 606
  • [6] ON THE GRAPHS OF PRODUCTS OF CONTINUOUS FUNCTIONS AND FRACTAL DIMENSIONS
    刘佳
    石赛赛
    张远
    [J]. Acta Mathematica Scientia, 2023, 43 (06) : 2483 - 2492
  • [7] On the graphs of products of continuous functions and fractal dimensions
    Jia Liu
    Saisai Shi
    Yuan Zhang
    [J]. Acta Mathematica Scientia, 2023, 43 : 2483 - 2492
  • [8] ON THE GRAPHS OF PRODUCTS OF CONTINUOUS FUNCTIONS AND FRACTAL DIMENSIONS
    Liu, Jia
    Shi, Saisai
    Zhang, Yuan
    [J]. ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2483 - 2492
  • [9] Fractal Dimension of Graphs of Typical Continuous Functions on Manifolds
    Mirzaie, Reza
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2018, 13 (02): : 93 - 99
  • [10] Average Hewitt-Stromberg and box dimensions of typical compact metric spaces
    Selmi, Bilel
    [J]. QUAESTIONES MATHEMATICAE, 2023, 46 (03) : 411 - 444