Temporal changes in soil hydraulic conductivity in saturated and unsaturated fields

被引:0
|
作者
Junko Nishiwaki
Robert Horton
机构
[1] Ibaraki University,College of Agriculture
[2] Iowa State University,Department of Agronomy
来源
关键词
Hydraulic conductivity; Temporal change; Tillage; Precipitation; Soil surface crust; Multiple combined effects;
D O I
暂无
中图分类号
学科分类号
摘要
Soil hydraulic conductivity (K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}) is an important soil property that exhibits relatively large uncertainty. The temporal variability of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} is often ignored when calculating water movement in soil. Various factors such as tillage, rain, temperature, wetting/drying, soil surface crusting, solution concentration, and biological activity can influence field K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. We investigated soil K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} in a central Iowa field as a function of time and tillage by using tension infiltrometer measurements with pressure head tension settings of 0 cm and − 3 cm. No clear relationship was found between bulk density (ρb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho_{\text{b}}$$\end{document}) and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. Path analysis was conducted to assess the contribution ratios and causal relationships between factors affecting K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} values were influenced by physical impacts such as tillage, precipitation, and surface crusting with contributions of 24%, − 32%, and 49%, respectively, and with error of 60%. Soil surface crusting had a particularly large impact on saturated K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. The maximum volume fraction influenced K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. Earthworm activity that impacted the soil pore structure was also noticed in the field. Owing to this biological mechanism, no relationship was observed between ρb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho_{\text{b}}$$\end{document} and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}. It is important to recognize the multiple combined effects of soil physical processes and biological activities when documenting K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} in field soils.
引用
收藏
页码:677 / 686
页数:9
相关论文
共 50 条
  • [1] Temporal changes in soil hydraulic conductivity in saturated and unsaturated fields
    Nishiwaki, Junko
    Horton, Robert
    PADDY AND WATER ENVIRONMENT, 2020, 18 (04) : 677 - 686
  • [2] The effect of entrapped air on the quasi-saturated soil hydraulic conductivity and comparison with the unsaturated hydraulic conductivity
    Sakaguchi, A
    Nishimura, T
    Kato, M
    VADOSE ZONE JOURNAL, 2005, 4 (01) : 139 - 144
  • [3] Spatial and temporal variability of soil saturated hydraulic conductivity in gradients of disturbance
    Zimmermann, Beate
    Elsenbeer, Helmut
    JOURNAL OF HYDROLOGY, 2008, 361 (1-2) : 78 - 95
  • [4] Spatial and temporal variability of saturated hydraulic conductivity in a central Sicily soil
    Bagarello, V
    Iovino, M
    MODELLING OF TRANSPORT PROCESSES IN SOILS: AT VARIOUS SCALES IN TIME AND SPACE, 1999, : 249 - 256
  • [5] SATURATED AND UNSATURATED HYDRAULIC CONDUCTIVITY OF SWELLING CLAYS
    NAKANO, M
    AMEMIYA, Y
    FUJII, K
    SOIL SCIENCE, 1986, 141 (01) : 1 - 6
  • [6] Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests
    Mingzhuo Hao
    Jinchi Zhang
    Miaojing Meng
    Han Y. H. Chen
    Xiaoping Guo
    Shenglong Liu
    Lixin Ye
    Scientific Reports, 9
  • [7] Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests
    Hao, Mingzhuo
    Zhang, Jinchi
    Meng, Miaojing
    Chen, Han Y. H.
    Guo, Xiaoping
    Liu, Shenglong
    Ye, Lixin
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [8] Saturated and unsaturated hydraulic conductivity of synthetic gel structures in coarse textured soil substrates
    Smagin, A. V.
    Sadovnikova, N. B.
    Shnyrev, N. A.
    Kokoreva, A. A.
    Sidorova, M. A.
    KEY CONCEPTS OF SOIL PHYSICS: DEVELOPMENT, FUTURE PROSPECTS AND CURRENT APPLICATIONS, 2019, 368
  • [9] Predicting saturated and unsaturated hydraulic conductivity in undisturbed soils from soil water characteristics
    Poulsen, TG
    Moldrup, P
    Yamaguchi, T
    Jacobsen, OH
    SOIL SCIENCE, 1999, 164 (12) : 877 - 887
  • [10] Determination of field-saturated hydraulic conductivity in unsaturated soil by the pressure infiltrometer method
    Morii, T
    Inoue, M
    Takeshita, Y
    UNSATURATED SOILS FOR ASIA, 2000, : 421 - 426