The Backward Problem of Stochastic Convection–Diffusion Equation

被引:0
|
作者
Xiaoli Feng
Lizhi Zhao
机构
[1] Xidian University,School of Mathematics and Statistics
关键词
Backward problem; Convection–diffusion equation; Existence; Ill-posedness; Truncated regularization method; 35R30; 35R60; 60G22; 65M32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a backward problem for the stochastic convection–diffusion equation. The source term is driven by the fraction Brownian motion. We illustrate the regularity of the mild solution and prove the instability of this problem. In order to overcome the ill-posedness, we apply a truncated regularization method to obtain a stable numerical approximation to u(x, t). Convergence estimates are presented under the a-priori parameter choice rule. Finally, some numerical experiments are given to show the effectivity of the regularization method.
引用
收藏
页码:3535 / 3560
页数:25
相关论文
共 50 条
  • [1] The Backward Problem of Stochastic Convection-Diffusion Equation
    Feng, Xiaoli
    Zhao, Lizhi
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3535 - 3560
  • [2] STOCHASTIC HOMOGENIZATION OF A CONVECTION-DIFFUSION EQUATION
    Bessaih, Hakima
    Efendiev, Yalchin
    Maris, Razvan Florian
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (03) : 2718 - 2745
  • [3] A contact problem for a convection-diffusion equation
    Pomeranz, S
    Lewis, G
    Constanda, C
    [J]. INTEGRAL METHODS IN SCIENCE AND ENGINEERING: THEORETICAL AND PRACTICAL ASPECTS, 2006, : 235 - +
  • [4] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [5] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    [J]. APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788
  • [6] The Regulator Problem to the Convection-Diffusion Equation
    Ramirez, Andres A.
    Jurado, Francisco
    [J]. MATHEMATICS, 2023, 11 (08)
  • [7] A free boundary problem for a diffusion-convection equation
    Briozzo, Adriana C.
    Tarzia, Domingo A.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2020, 120
  • [8] An Inverse Problem for a Nonlinear Diffusion-Convection Equation
    Silvana De Lillo
    Diletta Burini
    [J]. Acta Applicandae Mathematicae, 2012, 122 : 69 - 74
  • [9] An Inverse Problem for a Nonlinear Diffusion-Convection Equation
    De Lillo, Silvana
    Burini, Diletta
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 69 - 74
  • [10] BACKWARD PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Jia, Junxiong
    Peng, Jigen
    Gao, Jinghuai
    Li, Yujiao
    [J]. INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) : 773 - 799