Antimony-doped tin oxide nanoparticles for conductive polymer nanocomposites

被引:0
|
作者
W.E. Kleinjan
J.C.M. Brokken-Zijp
R. van de Belt
Z. Chen
G. de With
机构
[1] Eindhoven University of Technology,Laboratory of Materials and Interface Chemistry
[2] Kriya Materials B.V.,Laboratory of Materials and Interface Chemistry
[3] Eindhoven University of Technology,undefined
[4] General Electric China Technology Center,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Nanoparticles of antimony-doped tin oxide (ATO) were characterized for 0–33.3% Sb doping, both in aqueous dispersion and as dried powder. Antimony is incorporated in the cassiterite SnO2 structure of the ATO nanoparticles (d ≈ 7 nm) up to the highest doping levels, mainly as SbV, but with increasing Sb doping the SbIII content increases. We found adsorption of NH3 at the particle surface and evidence for the incorporation of nitrogen in the crystal lattice of the particles. The total nitrogen content increases with increasing Sb doping of the particles. Compact powder conductivity measurements show an increase in conductivity of ATO powder up to 13% Sb and a small decrease for higher Sb contents. Furthermore, we show that these particles can be used to prepare highly transparent conductive cross-linked ATO/acrylate nanocomposites with a continuous fractal particle network through the polymer matrix and a very low percolation threshold (ϕc ≈ 0.3 vol%).
引用
收藏
页码:869 / 880
页数:11
相关论文
共 50 条
  • [1] Antimony-doped tin oxide nanoparticles for conductive polymer nanocomposites
    Kleinjan, W. E.
    Brokken-Zijp, J. C. M.
    van de Belt, R.
    Chen, Z.
    de With, G.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2008, 23 (03) : 869 - 880
  • [2] Preparation and characterization of conductive antimony-doped tin oxide (ATO) nanoparticles
    林锋
    段学臣
    任先京
    [J]. 材料研究与应用, 2005, (Z1) : 258 - 261
  • [3] Photocatalytic Properties of Tin Oxide and Antimony-Doped Tin Oxide Nanoparticles
    Brokken-Zijp, J. C. M.
    van Asselen, O. L. J.
    Kleinjan, W. E.
    de Belt, R. van
    de Dewith, G.
    [J]. JOURNAL OF NANOTECHNOLOGY, 2011, 2011
  • [4] Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method
    Li, Yuan-Qing
    Wang, Jian-Lei
    Fu, Shao-Yun
    Mei, Shi-Gang
    Zhang, Jian-Min
    Yong, Kang
    [J]. MATERIALS RESEARCH BULLETIN, 2010, 45 (06) : 677 - 681
  • [5] Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles
    Zhang, JR
    Gao, L
    [J]. INORGANIC CHEMISTRY COMMUNICATIONS, 2004, 7 (01) : 91 - 93
  • [6] Ultrafast electron transfer between conjugated polymer and antimony-doped tin oxide (ATO) nanoparticles
    Guo, Jianchang
    She, Chunxing
    Lian, Tianquan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (12): : 4761 - 4766
  • [7] Ultrasonic Spray Pyrolysis of Antimony-Doped Tin Oxide Transparent Conductive Coatings
    Kim, Jaewon
    Murdoch, Billy J.
    Partridge, James G.
    Xing, Kaijian
    Qi, Dong-Chen
    Lipton-Duffin, Josh
    McConville, Christopher F.
    van Embden, Joel
    Della Gaspera, Enrico
    [J]. ADVANCED MATERIALS INTERFACES, 2020, 7 (18)
  • [8] Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles
    Hu, Peiwei
    Yang, Huaming
    [J]. APPLIED CLAY SCIENCE, 2010, 48 (03) : 368 - 374
  • [9] Understanding Macrophage Interaction with Antimony-Doped Tin Oxide Plasmonic Nanoparticles
    Balitskii, Olexiy
    Ivasiv, Viktoriya
    Porteiro-Figueiras, Maria
    Yajan, Phattadon
    Witzig, Mira
    Moreno-Echeverri, Aura Maria
    Diaz, Jose Muneton
    Rothen-Rutishauser, Barbara
    Petri-Fink, Alke
    Keshavan, Sandeep
    [J]. CELLS, 2024, 13 (17)
  • [10] An Antimony-Doped Tin Oxide Conductive Network for Flexible Electronics Based on Electrospinning
    Hu, Peiran
    Wu, Guiqing
    Zhang, Qinghong
    Wang, Hongzhi
    Li, Yaogang
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (06) : 5662 - 5667