Characteristic Polynomials for Random Band Matrices Near the Threshold

被引:0
|
作者
Tatyana Shcherbina
机构
[1] Princeton University,Department of Mathematics
来源
关键词
Band matrices; Characteristic polynomials; Transfer matrices;
D O I
暂无
中图分类号
学科分类号
摘要
The paper continues (Shcherbina and Shcherbina in Commun Math Phys 351:1009–1044, 2017); Shcherbina in Commun Math Phys 328:45–82, 2014) which study the behaviour of second correlation function of characteristic polynomials of the special case of n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} one-dimensional Gaussian Hermitian random band matrices, when the covariance of the elements is determined by the matrix J=(-W2▵+1)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=(-W^2\triangle +1)^{-1}$$\end{document}. Applying the transfer matrix approach, we study the case when the bandwidth W is proportional to the threshold n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}$$\end{document}.
引用
收藏
页码:920 / 944
页数:24
相关论文
共 50 条