A theorem due to Warfield states that “a ring R is left serial if and only if every (finitely generated) projective left R-module is serial” and a theorem due to Tuganbaev states that “a ring R is a finite direct product of uniserial Noetherian rings if and only if R is left duo, and all injective left R-modules are serial”. Most recently, in our previous paper [Virtually uniserial modules and rings, J Algebra 549:365–385, 2020], we introduced and studied the concept of virtually uniserial modules as a nontrivial generalization of uniserial modules. We say that an R-module M is virtually uniserial if, for every finitely generated submodule 0≠K⊆M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0\ne K\subseteq M$$\end{document}, K/Rad(K)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K/\mathrm{Rad}(K)$$\end{document} is virtually simple (an R-module M is virtually simple if, M≠0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M\ne 0$$\end{document} and M≅N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M\cong N$$\end{document} for every nonzero submodule N of M). Also, an R-module M is called virtually serial if it is a direct sum of virtually uniserial modules. The above results of Warfield and Tuganbaev motivated us to study the following questions: “Which rings have the property that every projective module is virtually serial?” and “Which rings have the property that every injective module is virtually serial?”. The goal of this paper is to answer these questions.
机构:
Kazan (Volga Region) Federal University, KazanKazan (Volga Region) Federal University, Kazan
Abyzov A.N.
Tuganbaev A.A.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow Power Engineering Institute (National Research University), Moscow
M. V. Lomonosov Moscow State University, MoscowKazan (Volga Region) Federal University, Kazan
Tuganbaev A.A.
Tapkin D.T.
论文数: 0引用数: 0
h-index: 0
机构:
Kazan (Volga Region) Federal University, KazanKazan (Volga Region) Federal University, Kazan
Tapkin D.T.
Cong Q.T.
论文数: 0引用数: 0
h-index: 0
机构:
The University of Danang, DanangKazan (Volga Region) Federal University, Kazan
机构:
Univ Shahreza, Fac Basic Sci, POB 86481-41143, Shahreza, Iran
Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, IranIsfahan Univ Technol, Dept Math Sci, POB 84156-83111, Esfahan, Iran
Moradzadeh-Dehkordi, A.
Nejadi, M. Qourchi
论文数: 0引用数: 0
h-index: 0
机构:
Isfahan Univ Technol, Dept Math Sci, POB 84156-83111, Esfahan, IranIsfahan Univ Technol, Dept Math Sci, POB 84156-83111, Esfahan, Iran
机构:
Univ Murcia, Dept Math, E-30100 Murcia, SpainSt Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
Guil Asensio, Pedro A.
Jain, S. K.
论文数: 0引用数: 0
h-index: 0
机构:
Ohio Univ, Dept Math, Athens, OH 45701 USA
King Abdulaziz Univ, Jeddah 21413, Saudi ArabiaSt Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
Jain, S. K.
Srivastava, Ashish K.
论文数: 0引用数: 0
h-index: 0
机构:
St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USASt Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA