I/O efficient ECC graph decomposition via graph reduction

被引:0
|
作者
Long Yuan
Lu Qin
Xuemin Lin
Lijun Chang
Wenjie Zhang
机构
[1] The University of New South Wales,Centre for QCIS
[2] University of Technology,undefined
来源
The VLDB Journal | 2017年 / 26卷
关键词
-Edge connected component decomposition; I/O efficient algorithm; Graph;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of computing k-edge connected components (k-ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document}s) of a graph G for a specific k is a fundamental graph problem and has been investigated recently. In this paper, we study the problem of ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document} decomposition, which computes the k-ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document}s of a graph G for all possible k values. ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document} decomposition can be widely applied in a variety of applications such as graph-topology analysis, community detection, Steiner Component Search, and graph visualization. A straightforward solution for ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document} decomposition is to apply the existing k-ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document} computation algorithm to compute the k-ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document}s for all k values. However, this solution is not applicable to large graphs for two challenging reasons. First, all existing k-ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document} computation algorithms are highly memory intensive due to the complex data structures used in the algorithms. Second, the number of possible k values can be very large, resulting in a high computational cost when each k value is independently considered. In this paper, we address the above challenges, and study I/O efficient ECC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {ECC}$$\end{document} decomposition via graph reduction. We introduce two elegant graph reduction operators which aim to reduce the size of the graph loaded in memory while preserving the connectivity information of a certain set of edges to be computed for a specific k. We also propose three novel I/O efficient algorithms, Bottom\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {Bottom}$$\end{document}-Up\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {Up}$$\end{document}, Top\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {Top}$$\end{document}-Down\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {Down}$$\end{document}, and Hybrid\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {Hybrid}$$\end{document}, that explore the k values in different orders to reduce the redundant computations between different k values. We analyze the I/O and memory costs for all proposed algorithms. In addition, we extend our algorithm to build an efficient index for Steiner Component Search. We show that our index can be used to perform Steiner Component Search in optimal I/Os when only the node information of the graph is allowed to be loaded in memory. In our experiments, we evaluate our algorithms using seven real large datasets with various graph properties, one of which contains 1.95 billion edges. The experimental results show that our proposed algorithms are scalable and efficient.
引用
收藏
页码:275 / 300
页数:25
相关论文
共 50 条
  • [1] I/O Efficient ECC Graph Decomposition via Graph Reduction
    Yuan, Long
    Qin, Lu
    Lin, Xuemin
    Chang, Lijun
    Zhang, Wenjie
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 9 (07): : 516 - 527
  • [2] I/O efficient ECC graph decomposition via graph reduction
    Yuan, Long
    Qin, Lu
    Lin, Xuemin
    Chang, Lijun
    Zhang, Wenjie
    [J]. VLDB JOURNAL, 2017, 26 (02): : 275 - 300
  • [3] I/O Efficient Core Graph Decomposition at Web Scale
    Wen, Dong
    Qin, Lu
    Zhang, Ying
    Lin, Xuemin
    Yu, Jeffrey Xu
    [J]. 2016 32ND IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2016, : 133 - 144
  • [4] I/O Efficient Core Graph Decomposition: Application to Degeneracy Ordering
    Wen, Dong
    Qin, Lu
    Zhang, Ying
    Lin, Xuemin
    Yu, Jeffrey Xu
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (01) : 75 - 90
  • [5] I/O-efficient multilevel graph partitioning algorithm for massive graph data
    Her, JH
    Ramakrishna, RS
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (07) : 1789 - 1794
  • [6] Efficient Sink-Reachability Analysis via Graph Reduction
    Dietrich, Jens
    Chang, Lijun
    Qian, Long
    Henry, Lyndon M.
    McCartin, Catherine
    Scholz, Bernhard
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5321 - 5335
  • [7] Efficient Graph Classification via Graph Encoding Networks
    Tuyen Thanh Thi Ho
    Hung Vu
    Bac Le
    [J]. 2020 RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES (RIVF 2020), 2020, : 93 - 98
  • [8] Practical and Efficient Split Decomposition via Graph-Labelled Trees
    Emeric Gioan
    Christophe Paul
    Marc Tedder
    Derek Corneil
    [J]. Algorithmica, 2014, 69 : 789 - 843
  • [9] Practical and Efficient Split Decomposition via Graph-Labelled Trees
    Gioan, Emeric
    Paul, Christophe
    Tedder, Marc
    Corneil, Derek
    [J]. ALGORITHMICA, 2014, 69 (04) : 789 - 843
  • [10] Efficient Distributed Core Graph Decomposition
    Zhang, Wenqian
    Yang, Zhengyi
    Wen, Dong
    Wang, Xiaoyang
    [J]. 2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1023 - 1031