Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions

被引:0
|
作者
Hilson H. Daum
Angelo M. Tusset
Mauricio A. Ribeiro
Grzegorz Litak
Atila M. Bueno
Jose M. Balthazar
机构
[1] Federal Technological University of Paraná,School of Engineering
[2] São Paulo State University,Faculty of Mechanical Engineering
[3] Lublin University of Technology,Institute of Science and Technology
[4] São Paulo State University,undefined
关键词
Nonlinear dynamics; SDRE control; OLFC control;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the dynamical behavior of a four-dimensional magnetohydrodynamic model, consisting of a generalized Lorenz model, is investigated. A nonlinear dynamical analysis is performed using Lyapunov exponents and bifurcation diagrams, focusing on the chaotic and hyperchaotic behaviors associated with the bifurcation parameter k1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( k_{1} \right) $$\end{document} that couples the equations of fluid displacement to the induced magnetic field. The State-dependent Riccati Equation (SDRE) and the Optimal Linear Feedback Control (OLFC) techniques are considered to design the state feedback control system that stabilizes the system to a previously defined orbit. The performance of the control systems are compared showing that the OLFC presents better results.
引用
收藏
页码:3457 / 3467
页数:10
相关论文
共 50 条
  • [1] Analysis and chaos control of a four-dimensional magnetohydrodynamic model with hyperchaotic solutions
    Daum, Hilson H.
    Tusset, Angelo M.
    Ribeiro, Mauricio A.
    Litak, Grzegorz
    Bueno, Atila M.
    Balthazar, Jose M.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (18-20): : 3457 - 3467
  • [2] Periodic solutions for a four-dimensional hyperchaotic system
    Yang, Jing
    Wei, Zhouchao
    Moroz, Irene
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [3] Periodic solutions for a four-dimensional hyperchaotic system
    Jing Yang
    Zhouchao Wei
    Irene Moroz
    [J]. Advances in Difference Equations, 2020
  • [4] Analysis of a novel four-dimensional hyperchaotic system
    Liu, Ling
    Liu, Chongxin
    Zhang, Yanbin
    [J]. CHINESE JOURNAL OF PHYSICS, 2008, 46 (04) : 386 - 393
  • [5] The generation and analysis of a new four-dimensional hyperchaotic system
    Wang, Jiezhi
    Chen, Zengqiang
    Yuan, Zhuzhi
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (06): : 1013 - 1024
  • [6] Local bifurcation analysis of a four-dimensional hyperchaotic system
    吴文娟
    陈增强
    袁著祉
    [J]. Chinese Physics B, 2008, 17 (07) : 2420 - 2432
  • [7] Local bifurcation analysis of a four-dimensional hyperchaotic system
    Wu Wen-Juan
    Chen Zeng-Qiang
    Yuan Zhu-Zhi
    [J]. CHINESE PHYSICS B, 2008, 17 (07) : 2420 - 2432
  • [8] A Four-Dimensional Hyperchaotic Finance System and Its Control Problems
    Cao, Lin
    [J]. JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2018, 2018
  • [9] Tracking control and synchronization of four-dimensional hyperchaotic Rossler system
    Wang, Xing-Yuan
    Wu, Xiang-Jun
    [J]. CHAOS, 2006, 16 (03)
  • [10] Four-dimensional switchable hyperchaotic system
    Ju, Yang-Zheng
    Jiang, Chang-Sheng
    Lin, Chang-Sheng
    Sun, Han
    [J]. ACTA PHYSICA SINICA, 2007, 56 (09) : 5131 - 5135