An application of nonparametric volatility estimators to option pricing

被引:7
|
作者
Kenmoe R.N. [1 ]
Sanfelici S. [2 ]
机构
[1] Dipartimento di Metodi Quantitativi, University of Milano-Bicocca, Milan
[2] Dipartimento di Economia, University of Parma, Parma
关键词
Fokker–Planck equation; High frequency data; Nonparametric volatility estimation; Option pricing;
D O I
10.1007/s10203-013-0150-1
中图分类号
学科分类号
摘要
We discuss the impact of volatility estimates from high frequency data on derivative pricing. The principal purpose is to estimate the diffusion coefficient of an Itô process using a nonparametric Nadaraya–Watson kernel approach based on selective estimators of spot volatility proposed in the econometric literature, which are based on high frequency data. The accuracy of different spot volatility estimates is measured in terms of how accurately they can reproduce market option prices. To this aim, we fit a diffusion model to S&P 500 data, and successively, we use the calibrated model to price European call options written on the S&P 500 index. The estimation results are compared to well-known parametric alternatives available in the literature. Empirical results not only show that using intra-day data rather than daily provides better volatility estimates and hence smaller pricing errors, but also highlight that the choice of the spot volatility estimator has effective impact on pricing. © 2013, Springer-Verlag Italia.
引用
收藏
页码:393 / 412
页数:19
相关论文
共 50 条
  • [1] Nonparametric Option Pricing with Generalized Entropic Estimators
    Almeida, Caio
    Freire, Gustavo
    Azevedo, Rafael
    Ardison, Kym
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (04) : 1173 - 1187
  • [2] Assessing the quality of volatility estimators via option pricing
    Sanfelici, Simona
    Uboldi, Adamo
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2014, 18 (02): : 103 - 124
  • [3] Stochastic volatility models with application in option pricing
    Gong H.
    Thavaneswaran A.
    Singh J.
    Journal of Statistical Theory and Practice, 2010, 4 (4) : 541 - 557
  • [4] Aggregation of nonparametric estimators for volatility matrix
    Fan, Jianqing
    Fan, Yingying
    Lv, Jinchi
    JOURNAL OF FINANCIAL ECONOMETRICS, 2007, 5 (03) : 321 - 357
  • [5] Bootstrapping nonparametric estimators of the volatility function
    Franke, E
    Neumann, MH
    Stockis, JP
    JOURNAL OF ECONOMETRICS, 2004, 118 (1-2) : 189 - 218
  • [6] Nonparametric American option pricing
    Alcock, Jamie
    Carmichael, Trent
    JOURNAL OF FUTURES MARKETS, 2008, 28 (08) : 717 - 748
  • [7] VOLATILITY EVALUATION IN OPTION PRICING
    Martinkute-Kauliene, Raimonda
    5TH INTERNATIONAL SCIENTIFIC CONFERENCE BUSINESS AND MANAGEMENT' 2008, 2008, : 189 - 193
  • [8] TARGET VOLATILITY OPTION PRICING
    Di Graziano, Giuseppe
    Torricelli, Lorenzo
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2012, 15 (01)
  • [9] STOCHASTIC VOLATILITY OPTION PRICING
    BALL, CA
    ROMA, A
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1994, 29 (04) : 589 - 607
  • [10] Good Volatility, Bad Volatility, and Option Pricing
    Feunou, Bruno
    Okou, Cedric
    JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2019, 54 (02) : 695 - 727