Non-uniformly expanding dynamics in maps with singularities and criticalities

被引:0
|
作者
Luzzatto S. [1 ]
Tucker W. [2 ]
机构
[1] Mathematics Institute, University of Warwick, Coventry
[2] Department of Mathematics, Uppsala University, Uppsala
关键词
Return Time; Strange Attractor; Escape Time; Positive Lyapunov Exponent; Essential Return;
D O I
10.1007/BF02698857
中图分类号
学科分类号
摘要
We investigate a one-parameter family of interval maps arising in the study of the geometric Lorenz flow for non-classical parameter values. Our conclusion is that for all parameters in a set of positive Lebesgue measure the map has a positive Lyapunov exponent. Furthermore, this set of parameters has a density point which plays an important dynamic role. The presence of both singular and critical points introduces interesting dynamics, which have not yet been fully understood. © 1999 Publications Mathematiques de L'I.H.E.S.
引用
收藏
页码:179 / 226
页数:47
相关论文
共 50 条
  • [1] NON-UNIFORMLY EXPANDING DYNAMICS IN MAPS WITH SINGULARITIES AND CRITICALITIES
    Luzzatto, Stefano
    Tucker, Warwick
    PUBLICATIONS MATHEMATIQUES DE L IHES, 1999, (89): : 179 - 226
  • [2] On the continuity of entropy for non-uniformly expanding maps
    Alves, JF
    Oliveira, K
    Tahzibi, A
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 409 - 414
  • [3] Equilibrium states for non-uniformly expanding maps
    Oliveira, K
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 1891 - 1905
  • [4] Large Deviations for Non-Uniformly Expanding Maps
    V. Araújo
    M. J. Pacifico
    Journal of Statistical Physics, 2006, 125 : 411 - 453
  • [5] Large deviations for non-uniformly expanding maps
    Araujo, V.
    Pacifico, M. J.
    JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (02) : 415 - 457
  • [6] On stochastic stability of non-uniformly expanding interval maps
    Shen, Weixiao
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 : 1091 - 1134
  • [7] Adapted random perturbations for non-uniformly expanding maps
    Araujo, Vitor
    Pacifico, Maria Jose
    Pinheiro, Mariana
    STOCHASTICS AND DYNAMICS, 2014, 14 (04)
  • [8] Thermodynamic Formalism for Random Non-uniformly Expanding Maps
    Stadlbauer, Manuel
    Suzuki, Shintaro
    Varandas, Paulo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 385 (01) : 369 - 427
  • [9] Strong statistical stability of non-uniformly expanding maps
    Alves, JF
    NONLINEARITY, 2004, 17 (04) : 1193 - 1215
  • [10] Equilibrium states for random non-uniformly expanding maps
    Arbieto, A
    Matheus, C
    Oliveira, K
    NONLINEARITY, 2004, 17 (02) : 581 - 593