On Globally Q-Linear Convergence of a Splitting Method for Group Lasso

被引:0
|
作者
Dong Y.-D. [1 ]
Zhang H.-B. [2 ]
Gao H. [2 ,3 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University, Zhengzhou
[2] College of Applied Sciences, Beijing University of Technology, Beijing
[3] College of Mathematics and Computational Science, Hunan First Normal University, Changsha
基金
中国国家自然科学基金;
关键词
Group Lasso; Proximal gradient method; Q-linear rate of convergence; Splitting method;
D O I
10.1007/s40305-017-0176-0
中图分类号
学科分类号
摘要
In this paper, we discuss a splitting method for group Lasso. By assuming that the sequence of the step lengths has positive lower bound and positive upper bound (unrelated to the given problem data), we prove its Q-linear rate of convergence of the distance sequence of the iterates to the solution set. Moreover, we make comparisons with convergence of the proximal gradient method analyzed very recently. © 2017, Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany.
引用
收藏
页码:445 / 454
页数:9
相关论文
共 50 条
  • [1] A short note on the Q-linear convergence of the steepest descent method
    Yuan, Ya-xiang
    MATHEMATICAL PROGRAMMING, 2010, 123 (02) : 339 - 343
  • [2] A short note on the Q-linear convergence of the steepest descent method
    Ya-xiang Yuan
    Mathematical Programming, 2010, 123 : 339 - 343
  • [3] Basic Fourier series on a q-linear grid:: Convergence theorems
    Cardoso, J. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 313 - 330
  • [4] Basic Fourier Series: Convergence on and Outside the q-Linear Grid
    Cardoso, J. L.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) : 96 - 114
  • [5] Basic Fourier Series: Convergence on and Outside the q-Linear Grid
    J. L. Cardoso
    Journal of Fourier Analysis and Applications, 2011, 17 : 96 - 114
  • [6] Uniform convergence of basic Fourier–Bessel series on a q-linear grid
    L. D. Abreu
    R. Álvarez-Nodarse
    J. L. Cardoso
    The Ramanujan Journal, 2019, 49 : 421 - 449
  • [7] ON THE Q-LINEAR CONVERGENCE RATE OF A CLASS OF METHODS FOR MONOTONE NONLINEAR EQUATIONS
    Zhou, Weijun
    Li, Dong-Hui
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (04): : 723 - 737
  • [8] Uniform convergence of basic Fourier-Bessel series on a q-linear grid
    Abreu, L. D.
    Alvarez-Nodarse, R.
    Cardoso, J. L.
    RAMANUJAN JOURNAL, 2019, 49 (02): : 421 - 449
  • [9] Q-linear Convergence of Distributed Optimization with Barzilai-Borwein Step Sizes
    Emiola, Iyanuoluwa
    Enyioha, Chinwendu
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [10] Edge rings with q-linear resolutions
    Mori, Kenta
    Ohsugi, Hidefumi
    Tsuchiya, Akiyoshi
    JOURNAL OF ALGEBRA, 2022, 593 : 550 - 567