A numerical approach for solving a class of variable-order fractional functional integral equations

被引:0
|
作者
Farzad Khane Keshi
Behrouz Parsa Moghaddam
Arman Aghili
机构
[1] Islamic Azad University,Department of Mathematics, Lahijan Branch
[2] University of Guilan,Department of Applied Mathematics, Faculty of Mathematical Sciences
来源
关键词
Variable-order fractional calculus; Integro spline; Richardson extrapolation; Discretization error; Pantograph functional integral equation; Emden–Fowler functional integral equation; 46N20; 65Q20; 26A33; 34K28; 65L70;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes new discretization techniques to estimate variable-order fractional integral operators based on the piecewise integro quadratic spline interpolation. The proposed methods are modified to solve a class of variable-order fractional functional integral equations. Moreover, we investigate the performance of the proposed methods by solving the variable-order fractional pantograph and Emden–Fowler functional integral equations.
引用
收藏
页码:4821 / 4834
页数:13
相关论文
共 50 条
  • [1] A numerical approach for solving a class of variable-order fractional functional integral equations
    Keshi, Farzad Khane
    Moghaddam, Behrouz Parsa
    Aghili, Arman
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4821 - 4834
  • [2] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Yifei Wang
    Jin Huang
    Hu Li
    Numerical Algorithms, 2024, 95 : 1855 - 1877
  • [3] An Efficient Numerical Approach For Solving Linear Variable-order Fractional Differential Equations
    Wang, Lei
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 26 (09): : 1249 - 1254
  • [4] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Wang, Yifei
    Huang, Jin
    Li, Hu
    NUMERICAL ALGORITHMS, 2024, 95 (04) : 1855 - 1877
  • [5] An ε-Approximate Approach for Solving Variable-Order Fractional Differential Equations
    Wang, Yahong
    Wang, Wenmin
    Mei, Liangcai
    Lin, Yingzhen
    Sun, Hongbo
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [6] An efficient numerical approach for solving variable-order fractional partial integro-differential equations
    Yifei Wang
    Jin Huang
    Ting Deng
    Hu Li
    Computational and Applied Mathematics, 2022, 41
  • [7] An efficient numerical approach for solving variable-order fractional partial integro-differential equations
    Wang, Yifei
    Huang, Jin
    Deng, Ting
    Li, Hu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [8] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [9] Chebyshev wavelets operational matrices for solving nonlinear variable-order fractional integral equations
    Yang, Y.
    Heydari, M. H.
    Avazzadeh, Z.
    Atangana, A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] Chebyshev wavelets operational matrices for solving nonlinear variable-order fractional integral equations
    Y. Yang
    M. H. Heydari
    Z. Avazzadeh
    A. Atangana
    Advances in Difference Equations, 2020