Topological phase diagram and materials realization in triangular lattice with multiple orbitals

被引:0
|
作者
Chenqiang Hua
Meimei Wu
Biyu Song
Wenjin Gao
Guoxiang Zhi
Tianchao Niu
Miao Zhou
机构
[1] Beihang Hangzhou Innovation Institute Yuhang,School of Physics
[2] Beihang University,undefined
来源
Quantum Frontiers | / 1卷 / 1期
关键词
Triangular lattice; Multiple orbitals; Quantum spin Hall; Phase diagram;
D O I
10.1007/s44214-022-00007-9
中图分类号
学科分类号
摘要
Triangular lattice, with each site coordinating with six neighbors, is one most common network in two-dimensional (2D) limit. Manifestations of peculiar properties in the lattice, including magnetic frustration and quantum spin liquid, have been restricted to single-orbital tight-binding (TB) model so far, while the orbital degree of freedom is largely overlooked. Here, by combining TB modeling with first-principles calculations, we demonstrate the rich electronic structures of triangular lattice with multiple (px,py,pz)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_{x}, p_{y}, p_{z})$\end{document} orbitals. Type I/II Dirac point, quadratic nodal point and nodal-loops are observed, and the topological phase diagram is mapped out by manipulating the horizontal mirror symmetry, spin-orbit coupling and energy position of relevant orbitals. Remarkably, we show that large-gap quantum spin Hall phase (∼0.2 eV) can be realized in experimentally achievable systems by growing indium monolayer on a series of semiconducting substrates, such as C/Si/Ge(111) and SiC(0001) surfaces, and the proposed materials capture the TB parameter space well. Our work not only provides physical insights into the orbital physics in 2D lattices, but also sheds light on the integration of novel quantum states with conventional semiconductor technology for potential applications, such as dissipationless interconnects for electronic circuits.
引用
收藏
相关论文
共 50 条
  • [1] Phase diagram and topological phases in the triangular lattice Kitaev-Hubbard model
    Li, Kai
    Yu, Shun-Li
    Gu, Zhao-Long
    Li, Jian-Xin
    PHYSICAL REVIEW B, 2016, 94 (12)
  • [2] Design and realization of topological Dirac fermions on a triangular lattice
    Bauernfeind, Maximilian
    Erhardt, Jonas
    Eck, Philipp
    Thakur, Pardeep K.
    Gabel, Judith
    Lee, Tien-Lin
    Schaefer, Joerg
    Moser, Simon
    Di Sante, Domenico
    Claessen, Ralph
    Sangiovanni, Giorgio
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Design and realization of topological Dirac fermions on a triangular lattice
    Maximilian Bauernfeind
    Jonas Erhardt
    Philipp Eck
    Pardeep K. Thakur
    Judith Gabel
    Tien-Lin Lee
    Jörg Schäfer
    Simon Moser
    Domenico Di Sante
    Ralph Claessen
    Giorgio Sangiovanni
    Nature Communications, 12
  • [4] PHASE-DIAGRAM FOR THE TRIANGULAR ISING LATTICE
    KABURAGI, M
    TONEGAWA, T
    KANAMORI, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1983, 31-4 (FEB) : 1037 - 1038
  • [5] Realization of a topological phase transition in a gyroscopic lattice
    Mitchell, Noah P.
    Nash, Lisa M.
    Irvine, William T. M.
    PHYSICAL REVIEW B, 2018, 97 (10)
  • [6] Phase diagram of the anisotropic triangular lattice Hubbard model
    Szasz, Aaron
    Motruk, Johannes
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [7] Phase diagram of the antiferromagnetic XXZ model on the triangular lattice
    Sellmann, Daniel
    Zhang, Xue-Feng
    Eggert, Sebastian
    PHYSICAL REVIEW B, 2015, 91 (08):
  • [8] MAGNETIC PHASE-DIAGRAM FOR THE TRIANGULAR ISING LATTICE
    KIKUCHI, R
    KOKUBUN, H
    KATSURA, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (06) : 1836 - 1845
  • [9] Phase diagram of the Hubbard model on the anisotropic triangular lattice
    Laubach, Manuel
    Thomale, Ronny
    Platt, Christian
    Hanke, Werner
    Li, Gang
    PHYSICAL REVIEW B, 2015, 91 (24)
  • [10] Phase diagram of the triangular-lattice Potts antiferromagnet
    Jacobsen, Jesper Lykke
    Salas, Jesus
    Scullard, Christian R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (34)