Lyapunov Convexity Theorem for von Neumann Algebras and Jordan Operator Structures

被引:0
|
作者
Jan Hamhalter
机构
[1] Czech Technical University in Prague,Department of Mathematics, Faculty of Electrical Engineering
来源
关键词
Noncommutative Lyapunov theorems; affine maps on convex sets; von Neumann algebras; algebras; triples; 46L51; 46L10; 46L30; 17C65;
D O I
暂无
中图分类号
学科分类号
摘要
We establish Lyapunov type theorems on automatic convexity of various affine transformations of the set of extreme points of important convex sets (closed unit ball, positive part of the closed unit ball, state space) appearing in the theory of von Neumann algebras and more general operator structures. Among others, we have shown that every bounded finitely additive measure μ:P(M)→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu : P(M)\rightarrow X$$\end{document}, where P(M) is a projection lattice of a von Neumann algebra M with no σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite direct summand, and X is a normed space with weak∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document} separable dual, has a convex range. Similar result is obtained for non σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-finite JW factor. Further results along this line are proved for weak* continuous countably dimensional affine maps on closed unit balls of nonatomic JBW∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {JBW}^*$$\end{document} triples and on positive parts of nonatomic von Neumann algebras and JBW∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {JBW}^*$$\end{document} algebras.
引用
收藏
相关论文
共 50 条