Shape optimization of a thermal insulation problem

被引:0
|
作者
Dorin Bucur
Mickaël Nahon
Carlo Nitsch
Cristina Trombetti
机构
[1] Univ. Savoie Mont Blanc,
[2] CNRS,undefined
[3] LAMA,undefined
[4] University of Napoli Federico II & Scuola Superiore Meridionale,undefined
[5] University of Napoli Federico II,undefined
关键词
35Q79; 49Q10;
D O I
暂无
中图分类号
学科分类号
摘要
We study a shape optimization problem involving a solid K⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\subset {\mathbb {R}}^n$$\end{document} that is maintained at constant temperature and is enveloped by a layer of insulating material Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} which obeys a generalized boundary heat transfer law. We minimize the energy of such configurations among all (K,Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(K,\Omega )$$\end{document} with prescribed measure for K and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, and no topological or geometrical constraints. In the convection case (corresponding to Robin boundary conditions on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}) we obtain a full description of minimizers, while for general heat transfer conditions, we prove the existence and regularity of solutions and give a partial description of minimizers.
引用
收藏
相关论文
共 50 条
  • [1] Shape optimization of a thermal insulation problem
    Bucur, Dorin
    Nahon, Mickael
    Nitsch, Carlo
    Trombetti, Cristina
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [2] Shape optimization for a nonlinear elliptic problem related to thermal insulation
    Barbato, Rosa
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2024, 35 (01) : 105 - 119
  • [3] Numerical results of the shape optimization problem for the insulation barrier
    Salac, Petr
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'16), 2016, 1789
  • [4] An optimization problem in thermal insulation with Robin boundary conditions
    Della Pietra, Francesco
    Nitsch, Carlo
    Scala, Riccardo
    Trombetti, Cristina
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (12) : 2288 - 2304
  • [5] Diagnosis of problem in heating system of a certain factory and optimization of thermal insulation material
    Yang, Zhenyao
    Cao, Chao
    Xi'an Jianzhu Keji Daxue Xuebao/Journal of Xi'an University of Architecture & Technology, 1996, 28 (03): : 351 - 354
  • [6] The problem of corrosion under thermal insulation
    Bovard, T
    MATERIALS PERFORMANCE, 2002, 41 (06) : 34 - 38
  • [7] OPTIMIZATION OF HOMOGENEOUS THERMAL INSULATION LAYERS
    CURTIS, JP
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1983, 19 (09) : 813 - 823
  • [8] Optimization of multilayer thermal insulation for pipelines
    Zaki, GM
    Al-Turki, AM
    HEAT TRANSFER ENGINEERING, 2000, 21 (04) : 63 - 70
  • [9] Optimization of Multilayer Thermal Insulation for Pipelines
    Zaki, G.M.
    Al-Turki, A.M.
    Heat Transfer Engineering, 2000, 21 (1-4) : 63 - 70
  • [10] Study of a shape optimization problem
    Abouchabaka, J
    Aboulaich, R
    Nachaoui, A
    Souissi, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (01): : 25 - 28