Transient analysis of diffusion-induced stress: effect of solid reaction

被引:0
|
作者
Yaohong Suo
Fuqian Yang
机构
[1] Fuzhou University,School of Mechanical Engineering and Automation
[2] University of Kentucky,Department of Chemical and Materials Engineering
[3] Xi’an Jiaotong University,State Key Lab for Strength and Vibration of Mechanical Structures, School of Aerospace
来源
Acta Mechanica | 2019年 / 230卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The chemical reactions taking place in lithium-ion batteries can trap lithium and alter the distribution of lithium and the deformation of the electrode during electrochemical charging and discharging. In this work, we incorporate the strain generated by chemical reactions in the transient analysis of diffusion-induced stress and numerically solve the one-dimensional problem under galvanostatic and potentiostatic operations, respectively. The numerical results show that both the diffusion and local chemical reaction contribute to the expansion of the electrode. Under the potentiostatic operation, lithiation introduces a stress spike at the fixed end at the onset of the lithiation. The chemical reactions play a significant role in controlling the temporal evolution of lithium and the deformation of electrode, which needs to be taken into account in the analysis of structural durability of lithium-ion batteries.
引用
收藏
页码:993 / 1002
页数:9
相关论文
共 50 条