Infinite Products of Binomials and Partitions of Numbers

被引:0
|
作者
Burlakov M.P. [1 ]
Burlakov V.M. [2 ]
机构
[1] Tver State University, Tver
[2] Penza State University, Penza
关键词
05E06; 11A06; infinite product; infinite system of linear equations; partition of a number;
D O I
10.1007/s10958-023-06791-6
中图分类号
学科分类号
摘要
In this paper, we consider expansions of functions into infinite products of power binomials. We also propose a formula for representing the exponential function by such products and formulas for calculating the number of partitions of natural numbers. © 2023, Springer Nature Switzerland AG.
引用
收藏
页码:701 / 707
页数:6
相关论文
共 50 条
  • [1] PARTITIONS OF INFINITE PRODUCTS OF TREES
    HALPERN, JD
    JOURNAL OF SYMBOLIC LOGIC, 1979, 44 (03) : 448 - 448
  • [2] Asymptotic expansions for partitions generated by infinite products
    Bridges, Walter
    Brindle, Benjamin
    Bringmann, Kathrin
    Franke, Johann
    MATHEMATISCHE ANNALEN, 2024, 390 (02) : 2593 - 2632
  • [3] INFINITE PRODUCTS AND FIBONACCI NUMBERS
    REDMOND, D
    FIBONACCI QUARTERLY, 1994, 32 (03): : 234 - 239
  • [5] Patterns in numbers and infinite sums and products
    Hu, Yining
    JOURNAL OF NUMBER THEORY, 2016, 162 : 589 - 600
  • [7] Algebraic relations with the infinite products generated by Fibonacci numbers
    Kurosawa, Takeshi
    Tachiya, Yohei
    Tanaka, Taka-aki
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 107 - 119
  • [8] ALGEBRAIC INDEPENDENCE OF INFINITE PRODUCTS GENERATED BY FIBONACCI NUMBERS
    Kurosawa, Takeshi
    Tachiya, Yohei
    Tanaka, Taka-aki
    TSUKUBA JOURNAL OF MATHEMATICS, 2011, 34 (02) : 255 - 264
  • [9] LINEAR INDEPENDENCE OF INFINITE PRODUCTS GENERATED BY THE LUCAS NUMBERS
    Duverney, Daniel
    Tachiya, Yohei
    FIBONACCI QUARTERLY, 2020, 58 (05): : 115 - 127
  • [10] Transcendence of infinite products involving Fibonacci and Lucas numbers
    Daniel Duverney
    Takeshi Kurosawa
    Research in Number Theory, 2022, 8