Corners and stable optimized domain decomposition methods for the Helmholtz problem

被引:0
|
作者
B. Després
A. Nicolopoulos
B. Thierry
机构
[1] Sorbonne Université,Laboratoire Jacques
[2] Sorbonne Université,Louis Lions
来源
Numerische Mathematik | 2021年 / 149卷
关键词
35J05; 65M55;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a new Absorbing Boundary Condition (ABC) adapted to solving the Helmholtz equation in polygonal domains in dimension two. Quasi-continuity relations are obtained at the corners of the polygonal boundary. This ABC is then used in the context of domain decomposition where various stable algorithms are constructed and analysed. Next, the operator of this ABC is adapted to obtain a transmission operator for the Domain Decomposition Method (DDM) that is well suited for broken line interfaces. For each algorithm, we show the decrease of an adapted quadratic pseudo-energy written on the skeleton of the mesh decomposition, which establishes the stability of these methods. Implementation within a finite element solver (GMSH/GetDP) and numerical tests illustrate the theory.
引用
收藏
页码:779 / 818
页数:39
相关论文
共 50 条
  • [1] Corners and stable optimized domain decomposition methods for the Helmholtz problem
    Despres, B.
    Nicolopoulos, A.
    Thierry, B.
    NUMERISCHE MATHEMATIK, 2021, 149 (04) : 779 - 818
  • [2] Stable boundary element domain decomposition methods for the Helmholtz equation
    Steinbach, O.
    Windisch, M.
    NUMERISCHE MATHEMATIK, 2011, 118 (01) : 171 - 195
  • [3] Stable boundary element domain decomposition methods for the Helmholtz equation
    O. Steinbach
    M. Windisch
    Numerische Mathematik, 2011, 118 : 171 - 195
  • [4] On the use of rational iterations and domain decomposition methods for the Helmholtz problem
    Kim, S
    NUMERISCHE MATHEMATIK, 1998, 79 (04) : 529 - 552
  • [5] On the use of rational iterations and domain decomposition methods for the Helmholtz problem
    Seongjai Kim
    Numerische Mathematik, 1998, 79 : 529 - 552
  • [6] DOMAIN DECOMPOSITION METHOD FOR THE HELMHOLTZ PROBLEM
    DESPRES, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (06): : 313 - 316
  • [7] Domain decomposition methods and integral equation for solving Helmholtz diffraction problem
    Boubendir, Y
    Bendali, A
    Collino, F
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 760 - 764
  • [8] OPTIMIZED TRANSMISSION CONDITIONS IN DOMAIN DECOMPOSITION METHODS WITH CROSS-POINTS FOR HELMHOLTZ EQUATION
    Despres, B.
    Nicolopoulos, A.
    Thierry, B.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (05) : 2482 - 2507
  • [9] A domain decomposition method for the exterior Helmholtz problem
    Susan-Resiga, RF
    Atassi, HM
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) : 388 - 401
  • [10] Deep Domain Decomposition Methods: Helmholtz Equation
    Li, Wuyang
    Wang, Ziming
    Cui, Tao
    Xu, Yingxiang
    Xiang, Xueshuang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (01) : 118 - 138