The problem of interaction between equal coplanar elliptic cracks embedded in a homogeneous isotropic elastic medium and subjected to shear loading was solved analytically by Saha et al. (1999) International Journal of Solids and Structures36, 619–637, using an integral equation method. In the present study the same integral equation method has been used to solve the title problem. Analytical expression for the two tangential crack opening displacement potentials have been obtained as series in terms of the crack separation parameter βi up to the order βi5,(i=1,2) for both the elliptic as well as penny-shaped crack. Expressions for modes II and III stress intensity factors have been given for both the cracks. The present solution may be treated as benchmark to solutions of similar problems obtained by various numerical methods developed recently. The analytical results may be used to obtain solutions for interaction between macro elliptic crack and micro penny-shaped crack or vice-versa when the cracks are subjected to shear loading and are not too close. Numerical results of the stress-intensity magnification factor has been illustrated graphically for different aspect ratios, crack sizes, crack separations, Poisson ratios and loading angles. Also the present results have been compared with the existing results of Kachanov and Laures (1989) International Journal of Fracture41, 289–313, for equal penny-shaped cracks and illustrations have been given also for the special case of interaction between unequal penny-shaped cracks subjected to uniform shear loading.