Boolean Witt vectors and an integral Edrei–Thoma theorem

被引:0
|
作者
James Borger
Darij Grinberg
机构
[1] Australian National University,Mathematical Sciences Institute
[2] Massachusetts Institute of Technology,undefined
来源
Selecta Mathematica | 2016年 / 22卷
关键词
Witt vector; Semiring; Symmetric function; Schur positivity; Total positivity; Boolean algebra; Primary 13F35; Secondary 16Y60; 05E05; 05E10;
D O I
暂无
中图分类号
学科分类号
摘要
A subtraction-free definition of the big Witt vector construction was recently given by the first author. This allows one to define the big Witt vectors of any semiring. Here we give an explicit combinatorial description of the big Witt vectors of the Boolean semiring. We do the same for two variants of the big Witt vector construction: the Schur Witt vectors and the p-typical Witt vectors. We use this to give an explicit description of the Schur Witt vectors of the natural numbers, which can be viewed as the classification of totally positive power series with integral coefficients, first obtained by Davydov. We also determine the cardinalities of some Witt vector algebras with entries in various concrete arithmetic semirings.
引用
收藏
页码:595 / 629
页数:34
相关论文
共 50 条
  • [1] Boolean Witt vectors and an integral Edrei-Thoma theorem
    Borger, James
    Grinberg, Darij
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (02): : 595 - 629
  • [2] Integral valued difference rational functions over Witt vectors.
    Bélair, L
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) : 83 - 86
  • [3] On the Edrei–Goldberg–Ostrovskii Theorem for Minimal Surfaces
    A. Kowalski
    I. I. Marchenko
    Analysis Mathematica, 2023, 49 : 807 - 823
  • [4] GENERALIZED WITT VECTORS
    GRAHAM, JJ
    ADVANCES IN MATHEMATICS, 1993, 99 (02) : 248 - 263
  • [5] Overconvergent Witt vectors
    Davis, Christopher
    Langer, Andreas
    Zink, Thomas
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 668 : 1 - 34
  • [6] An alternative to Witt vectors
    Cuntz, Joachim
    Deninger, Christopher
    MUENSTER JOURNAL OF MATHEMATICS, 2014, 7 (01): : 105 - 114
  • [7] On the Edrei-Goldberg-Ostrovskii Theorem for Minimal Surfaces
    Kowalski, A.
    Marchenko, I. I.
    ANALYSIS MATHEMATICA, 2023, 49 (03) : 807 - 823
  • [8] Cartier's first theorem for Witt vectors on Z≥0n-0
    Wickelgren, Kirsten
    ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS, 2014, 620 : 321 - 328
  • [9] Lie powers and Witt vectors
    R. M. Bryant
    Marianne Johnson
    Journal of Algebraic Combinatorics, 2008, 28 : 169 - 187
  • [10] Witt vectors and Fermat quotients
    Di Bartolo, A.
    Falcone, G.
    JOURNAL OF NUMBER THEORY, 2008, 128 (05) : 1376 - 1387