Symmetric Set Coloring of Signed Graphs

被引:0
|
作者
Chiara Cappello
Eckhard Steffen
机构
[1] Paderborn University,Department of Mathematics and NRW Forschungskolleg Gestaltung von flexiblen Arbeitswelten
[2] Paderborn University,Department of Mathematics
来源
Annals of Combinatorics | 2023年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There are many concepts of signed graph coloring which are defined by assigning colors to the vertices of the graphs. These concepts usually differ in the number of self-inverse colors used. We introduce a unifying concept for this kind of coloring by assigning elements from symmetric sets to the vertices of the signed graphs. In the first part of the paper, we study colorings with elements from symmetric sets where the number of self-inverse elements is fixed. We prove a Brooks’-type theorem and upper bounds for the corresponding chromatic numbers in terms of the chromatic number of the underlying graph. These results are used in the second part where we introduce the symset-chromatic number χsym(G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\mathrm{sym}(G,\sigma )$$\end{document} of a signed graph (G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G,\sigma )$$\end{document}. We show that the symset-chromatic number gives the minimum partition of a signed graph into independent sets and non-bipartite antibalanced subgraphs. In particular, χsym(G,σ)≤χ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\mathrm{sym}(G,\sigma ) \le \chi (G)$$\end{document}. In the final section we show that these colorings can also be formalized as DP-colorings.
引用
收藏
页码:211 / 227
页数:16
相关论文
共 50 条
  • [1] Symmetric Set Coloring of Signed Graphs
    Cappello, Chiara
    Steffen, Eckhard
    ANNALS OF COMBINATORICS, 2023, 27 (02) : 211 - 227
  • [2] Edge coloring signed graphs
    Behr, Richard
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [3] Circular coloring of signed graphs
    Kang, Yingli
    Steffen, Eckhard
    JOURNAL OF GRAPH THEORY, 2018, 87 (02) : 135 - 148
  • [4] Edge coloring of signed graphs
    Zhang, Li
    Lu, You
    Luo, Rong
    Ye, Dong
    Zhang, Shenggui
    DISCRETE APPLIED MATHEMATICS, 2020, 282 : 234 - 242
  • [5] SIGNED GRAPHS FROM PROPER COLORING OF GRAPHS
    Antoney, Divya
    Mangam, Tabitha Agnes
    Acharya, Mukti
    3C TECNOLOGIA, 2023, 12 (02): : 148 - 161
  • [6] EDGE COLORING OF PRODUCTS OF SIGNED GRAPHS
    Janczewski, Robert
    Turowski, Krzysztof
    Wroblewski, Bartlomiej
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [7] Online list coloring for signed graphs
    Tupper, M.
    White, J. A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 33 (02): : 151 - 172
  • [8] Coloring signed graphs using DFS
    Fleiner, T.
    Wiener, G.
    OPTIMIZATION LETTERS, 2016, 10 (04) : 865 - 869
  • [9] COLORING PROBLEM OF SIGNED INTERVAL GRAPHS
    Ramezani, Farzaneh
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (04) : 1 - 9
  • [10] Coloring signed graphs using DFS
    T. Fleiner
    G. Wiener
    Optimization Letters, 2016, 10 : 865 - 869