Pattern formation of Schnakenberg model using trigonometric quadratic B-spline functions

被引:0
|
作者
Aysun Tok Onarcan
Nihat Adar
Idiris Dag
机构
[1] Eskisehir Osmangazi University,Department of Informatics
[2] Eskisehir Osmangazi University,Department of Computer Engineering
来源
Pramana | / 96卷
关键词
Reaction–diffusion systems; finite element; quadratic B-spline; Schnakenberg model; 02.70.Cn; 02.60.Cb; 52.35.Mw;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the design of a numerical method for the Schnakenberg model. The patterns are nicely captured by way of the parameter values of the Schnakenberg model. The spatial integration of the equation is achieved by using a finite element method setting up the trigonometric quadratic B-spline collocation method over the subelements of the problem domain. The Crank–Nicolson technique is employed to get fully integrated Schnakenberg model. Numerical examples are given to show the good agreement with the Schnakenberg patterns.
引用
收藏
相关论文
共 50 条
  • [1] Pattern formation of Schnakenberg model using trigonometric quadratic B-spline functions
    Onarcan, Aysun Tok
    Adar, Nihat
    Dag, Idiris
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2022, 96 (03):
  • [2] A quadratic trigonometric B-Spline as an alternate to cubic B-spline
    Samreen, Shamaila
    Sarfraz, Muhammad
    Mohamed, Abullah
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 11433 - 11443
  • [3] Quadratic trigonometric B-spline for image interpolation using GA
    Hussain, Malik Zawwar
    Abbas, Samreen
    Irshad, Misbah
    [J]. PLOS ONE, 2017, 12 (06):
  • [4] Airplane designing using Quadratic Trigonometric B-spline with shape parameters
    Majeed, Abdul
    Abbas, Muhammad
    Sittar, Amna Abdul
    Misro, Md Yushalify
    Kamran, Mohsin
    [J]. AIMS MATHEMATICS, 2021, 6 (07): : 7669 - 7683
  • [5] The Quadratic Trigonometric B-Spline Curve with a Shape Parameter
    Li, Juncheng
    Chen, Guohua
    Yang, Lian
    [J]. AUTOMATION EQUIPMENT AND SYSTEMS, PTS 1-4, 2012, 468-471 : 2463 - 2466
  • [6] Trigonometric quadratic B-spline subdomain Galerkin algorithm for the Burgers' equation
    Ay, Buket
    Dag, Idris
    Gorgulu, Melis Zorsahin
    [J]. OPEN PHYSICS, 2015, 13 (01): : 400 - 406
  • [7] MODELING CURVES BY A QUADRATIC TRIGONOMETRIC B-SPLINE WITH POINT SHAPE CONTROL
    Sarfraz, M.
    Samreen, S.
    Hussain, M. Z.
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 340 - 342
  • [8] Geometric Modeling Using New Cubic Trigonometric B-Spline Functions with Shape Parameter
    Majeed, Abdul
    Abbas, Muhammad
    Qayyum, Faiza
    Miura, Kenjiro T.
    Misro, Md Yushalify
    Nazir, Tahir
    [J]. MATHEMATICS, 2020, 8 (12) : 1 - 25
  • [9] QUADRATIC TRIGONOMETRIC B-SPLINE GALERKIN METHODS FOR THE REGULARIZED LONG WAVE EQUATION
    Irk, Dursun
    Keskin, Pinar
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 617 - 631
  • [10] Solving Dym Equation using Quartic B-spline and Quartic Trigonometric B-spline Collocation Methods
    Anuar, Hanis Safirah Saiful
    Mafazi, Nur Hidayah
    Abd Hamid, Nur Nadiah
    Abd Majid, Ahmad
    Azmi, Amirah
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870