A continuous-time model of self-protection

被引:0
|
作者
Sarah Bensalem
Nicolás Hernández-Santibáñez
Nabil Kazi-Tani
机构
[1] LSAF EA2429,Université de Lyon 1, ISFA
[2] Universidad de Chile,Center for Mathematical Modeling
[3] Université de Lorraine,Institut Elie Cartan de Lorraine
[4] UFR MIM,undefined
来源
Finance and Stochastics | 2023年 / 27卷
关键词
Self-protection; Prevention effort; Dynamic programming; Continuation utility; BSDEs; 91B05; 91B06; 93E20; D61; D81; G22;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with an optimal linear insurance demand model, where the protection buyer can also exert a time-dynamic costly prevention effort to reduce her risk exposure. This is expressed as a stochastic control problem that consists in maximising an exponential utility of a terminal wealth. We assume that the effort reduces the intensity of the jump arrival process and interpret this as dynamic self-protection. We solve the problem by using a dynamic programming approach, and we provide a representation of the certainty equivalent of the buyer as the solution to a backward stochastic differential equation (BSDE). Using this representation, we prove that an exponential utility maximiser has an incentive to modify her effort dynamically only in the presence of a terminal reimbursement in the contract. Otherwise, the dynamic effort is actually constant, for a class of compound Poisson loss processes. If there is no terminal reimbursement, we solve the problem explicitly and identify the dynamic certainty equivalent of the protection buyer. This shows in particular that the Lévy property of the loss process is preserved under exponential utility maximisation. We also characterise the constant effort as the unique minimiser of an explicit Hamiltonian, from which we can determine the optimal effort in particular cases. Finally, after studying the dependence of the BSDE associated to the insurance buyer on the linear insurance contract parameter, we prove the existence of an optimal linear cover that is not necessarily zero or full insurance.
引用
收藏
页码:503 / 537
页数:34
相关论文
共 50 条
  • [1] A continuous-time model of self-protection
    Bensalem, Sarah
    Hernandez-Santibanez, Nicolas
    Kazi-Tani, Nabil
    [J]. FINANCE AND STOCHASTICS, 2023, 27 (02) : 503 - 537
  • [2] A model of self-protection in the cyberspace
    Mihelic, Anze
    Vrhovec, Simon
    [J]. ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2018, 85 (1-2): : 13 - 22
  • [3] Analysis of a SIRS model with self-protection
    Cao, Yu
    Jing, Yuanwei
    Yuan, Feng
    Zheng, Xuting
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 3850 - 3852
  • [4] Self-Protection Model Based on Intelligent Agent
    Sun, Bing
    Zhang, Ya-Ping
    Zhang, Ning
    [J]. NSS: 2009 3RD INTERNATIONAL CONFERENCE ON NETWORK AND SYSTEM SECURITY, 2009, : 199 - +
  • [5] SELF-PROTECTION IN THE STOMACH
    不详
    [J]. BRITISH MEDICAL JOURNAL, 1946, 2 (4466): : 204 - 205
  • [6] Specialized self-protection
    Deane, Caitlin
    [J]. NATURE CHEMICAL BIOLOGY, 2021, 17 (03) : 231 - 231
  • [7] DECISIONS AND SELF-PROTECTION
    KARP, HR
    [J]. INSTRUMENTATION TECHNOLOGY, 1967, 14 (09): : 37 - +
  • [8] The economics of self-protection
    Peter, Richard
    [J]. GENEVA RISK AND INSURANCE REVIEW, 2024, 49 (01): : 6 - 35
  • [9] Specialized self-protection
    Caitlin Deane
    [J]. Nature Chemical Biology, 2021, 17 : 231 - 231
  • [10] ALTRUISM OR SELF-PROTECTION
    BROOKS, CC
    [J]. SCIENCE NEWS, 1984, 126 (20) : 318 - 318