Feature Extraction Using Laplacian Maximum Margin Criterion

被引:0
|
作者
Wankou Yang
Changyin Sun
Helen S. Du
Jingyu Yang
机构
[1] Southeast University,School of Automation
[2] The Hong Kong Polytechnic University,Department of Computing
[3] Nanjing University of Science and Technology,School of Computer Science and Technology
来源
Neural Processing Letters | 2011年 / 33卷
关键词
Maximum Margin Criterion; Linear discriminant analysis; Laplacian; Feature extraction; Face recognition;
D O I
暂无
中图分类号
学科分类号
摘要
Feature extraction by Maximum Margin Criterion (MMC) can more efficiently calculate the discriminant vectors than LDA, by avoiding calculation of the inverse within-class scatter matrix. But MMC ignores the local structures of samples. In this paper, we develop a novel criterion to address this issue, namely Laplacian Maximum Margin Criterion (Laplacian MMC). We define the total Laplacian matrix, within-class Laplacian matrix and between-class Laplacian matrix by using the similar weight of samples to capture the scatter information. Laplacian MMC based feature extraction gets the discriminant vectors by maximizing the difference between between-class laplacian matrix and within-class laplacian matrix. Experiments on FERET and AR face databases show that Laplacian MMC works well.
引用
收藏
页码:99 / 110
页数:11
相关论文
共 50 条
  • [1] Feature Extraction Using Laplacian Maximum Margin Criterion
    Yang, Wankou
    Sun, Changyin
    Du, Helen S.
    Yang, Jingyu
    NEURAL PROCESSING LETTERS, 2011, 33 (01) : 99 - 110
  • [2] Feature extraction using kernel Laplacian maximum margin criterion
    Sun, Zhongxi
    Sun, Changyin
    Yang, Wankou
    Wang, Zhenyu
    OPTICAL ENGINEERING, 2012, 51 (06)
  • [3] Feature extraction based on Laplacian bidirectional maximum margin criterion
    Yang, Wankou
    Wang, Jianguo
    Ren, Mingwu
    Yang, Jingyu
    Zhang, Lei
    Liu, Guanghai
    PATTERN RECOGNITION, 2009, 42 (11) : 2327 - 2334
  • [4] Feature extraction using fuzzy maximum margin criterion
    Cui, Yan
    Fan, Liya
    NEUROCOMPUTING, 2012, 86 : 52 - 58
  • [5] Efficient and robust feature extraction by maximum margin criterion
    Li, HF
    Jiang, T
    Zhang, KH
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 97 - 104
  • [6] Efficient and robust feature extraction by maximum margin criterion
    Liu, Jun
    Cheri, Songcan
    Tan, Xiaoyang
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (06): : 1862 - 1864
  • [7] Efficient and robust feature extraction by maximum margin criterion
    Li, HF
    Jiang, T
    Zhang, KS
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (01): : 157 - 165
  • [8] Feature Extraction Base on Local Maximum Margin Criterion
    Yang, Wankou
    Wang, Jianguo
    Ren, Mingwu
    Yang, Jingyu
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 416 - 419
  • [9] Supervised Feature Extraction of Hyperspectral Images Using Partitioned Maximum Margin Criterion
    Datta, Aloke
    Ghosh, Susmita
    Ghosh, Ashish
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (01) : 82 - 86
  • [10] A Fuzzy Kernel Maximum Margin Criterion for Image Feature Extraction
    Xuan, Shibin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015