(3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-Dimensional topologically massive 2-form gauge theory: geometrical superfield approach

被引:0
|
作者
R. Kumar
Debmalya Mukhopadhyay
机构
[1] University of Delhi,Department of Physics and Astrophysics
[2] Indian Association for the Cultivation of Science,Department of Theoretical Physics
[3] Variable Energy Cyclotron Centre (VECC),undefined
来源
The European Physical Journal C | 2018年 / 78卷 / 6期
关键词
D O I
10.1140/epjc/s10052-018-5933-7
中图分类号
学科分类号
摘要
We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations corresponding to the combined “scalar” and “vector” gauge symmetry transformations for the (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional (4D) topologically massive non-Abelian (B∧F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(B \wedge F)$$\end{document} theory with the help of geometrical superfield formalism. For this purpose, we use three horizontality conditions (HCs). The first HC produces the (anti-)BRST transformations for the 1-form gauge field and corresponding (anti-)ghost fields whereas the second HC yields the (anti-)BRST transformations for 2-form field and associated (anti-)ghost fields. The integrability of second HC produces third HC. The latter HC produces the (anti-)BRST symmetry transformations for the compensating auxiliary vector field and corresponding ghosts. We obtain five (anti-)BRST invariant Curci–Ferrari (CF)-type conditions which emerge very naturally as the off-shoots of superfield formalism. Out of five CF-type conditions, two are fermionic in nature. These CF-type conditions play a decisive role in providing the absolute anticommutativity of the (anti-)BRST transformations and also responsible for the derivation of coupled but equivalent (anti-)BRST invariant Lagrangian densities. Furthermore, we capture the (anti-)BRST invariance of the coupled Lagrangian densities in terms of the superfields and translation generators along the Grassmannian directions θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} and θ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\theta }$$\end{document}.
引用
收藏
相关论文
共 50 条