A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality

被引:0
|
作者
Fabrice Baudoin
Michel Bonnefont
Nicola Garofalo
机构
[1] Purdue University,Department of Mathematics
[2] Université Bordeaux 1,Institut de Mathématiques de Bordeaux
[3] Università di Padova,Dipartimento d’Ingegneria Civile e Ambientale (DICEA)
来源
Mathematische Annalen | 2014年 / 358卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb M $$\end{document} be a smooth connected manifold endowed with a smooth measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and a smooth locally subelliptic diffusion operator L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} satisfying L1=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L1=0$$\end{document}, and which is symmetric with respect to μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. We show that if L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} satisfies, with a non negative curvature parameter, the generalized curvature inequality introduced by the first and third named authors in http://arxiv.org/abs/1101.3590, then the following properties hold:The volume doubling property;The Poincaré inequality;The parabolic Harnack inequality. The key ingredient is the study of dimension dependent reverse log-Sobolev inequalities for the heat semigroup and corresponding non-linear reverse Harnack type inequalities. Our results apply in particular to all Sasakian manifolds whose horizontal Webster–Tanaka–Ricci curvature is nonnegative, all Carnot groups of step two, and to wide subclasses of principal bundles over Riemannian manifolds whose Ricci curvature is nonnegative.
引用
收藏
页码:833 / 860
页数:27
相关论文
共 50 条