CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases

被引:0
|
作者
Seyed Ahmad Rasoulinejad
Faezeh Maroufi
机构
[1] Babol University of Medical Sciences,Department of Ophthalmology, Ayatollah Rouhani Hospital
[2] Qazvin University of Medical Sciences,Department of Medical Laboratory Sciences, Faculty of Allied Medicine
来源
Molecular Biotechnology | 2021年 / 63卷
关键词
CRISPR-Cas9; Genome editing; Retinal diseases; Gene knock-out;
D O I
暂无
中图分类号
学科分类号
摘要
Retinal diseases are the primary reasons for severe visual defects and irreversible blindness. Retinal diseases are also inherited and acquired. Both of them are caused by mutations in genes or disruptions in specific gene expression, which can be treated by gene-editing therapy. Clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) system is a frontier of gene-editing tools with great potential for therapeutic applications in the ophthalmology field to modify abnormal genes and treat the genome or epigenome-related retinal diseases. The CRISPR system is able to edit and trim the gene include deletion, insertion, inhibition, activation, replacing, remodeling, epigenetic alteration, and modify the gene expression. CRISPR-based genome editing techniques have indicated the enormous potential to treat retinal diseases that previous treatment was not available for them. Also, recent CRISPR genome surgery experiments have shown the improvement of patient's vision who suffered from severe visual loss. In this article, we review the applications of the CRISPR-Cas9 system in human or animal models for treating retinal diseases such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), proliferative diabetic retinopathy (PDR), and proliferative vitreoretinopathy (PVR), then we survey limitations of CRISPR system for clinical therapy.
引用
下载
收藏
页码:768 / 779
页数:11
相关论文
共 50 条
  • [1] CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases
    Rasoulinejad, Seyed Ahmad
    Maroufi, Faezeh
    MOLECULAR BIOTECHNOLOGY, 2021, 63 (09) : 768 - 779
  • [2] Accounting for diversity in the design of CRISPR-based therapeutic genome editing
    Saha, Krishanu
    NATURE GENETICS, 2023, 55 (01) : 6 - 7
  • [3] Accounting for diversity in the design of CRISPR-based therapeutic genome editing
    Krishanu Saha
    Nature Genetics, 2023, 55 : 6 - 7
  • [4] CRISPR-based genome editing of zebrafish
    Sharma, Preeti
    Sharma, B. Sharan
    Verma, Ramtej J.
    REPROGRAMMING THE GENOME: APPLICATIONS OF CRISPR-CAS IN NON-MAMMALIAN SYSTEMS, PT B, 2021, 180 : 69 - 84
  • [5] Implications of human genetic variation in CRISPR-based therapeutic genome editing
    Scott, David A.
    Zhang, Feng
    NATURE MEDICINE, 2017, 23 (09) : 1095 - +
  • [6] Implications of human genetic variation in CRISPR-based therapeutic genome editing
    David A Scott
    Feng Zhang
    Nature Medicine, 2017, 23 : 1095 - 1101
  • [7] CRISPR-based genome editing in disease treatment
    Qin, Huan
    Xu, Weihui
    Yao, Kai
    TRENDS IN MOLECULAR MEDICINE, 2023, 29 (08) : 673 - 674
  • [8] CRISPR-Based Therapeutic Genome Editing: Strategies and In Vivo Delivery by AAV Vectors
    Wang, Dan
    Zhang, Feng
    Gao, Guangping
    CELL, 2020, 181 (01) : 136 - 150
  • [9] In Vivo Applications of CRISPR-Based Genome Editing in the Retina
    Yu, Wenhan
    Wu, Zhijian
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2018, 6
  • [10] Carrot genome editing using CRISPR-based systems
    Klimek-Chodacka, M.
    Oleszkiewicz, T.
    Qi, Y.
    Baranski, R.
    PROCEEDINGS OF THE II INTERNATIONAL SYMPOSIUM ON CARROT AND OTHER APIACEAE, 2019, 1264 : 53 - 65