Weak rigid monoidal category

被引:0
|
作者
Haijun Cao
机构
[1] Shandong Jiaotong University,School of Science
来源
关键词
Semilattice graded weak Hopf algebra; regular right dual; weak rigid monoidal category; 16W30; 16W50; 16G20; 16G30; 81R50;
D O I
暂无
中图分类号
学科分类号
摘要
We define the right regular dual of an object X in a monoidal category C; and give several results regarding the weak rigid monoidal category. Based on the definition of the right regular dual, we construct a weak Hopf algebra structure of H = End(F) whenever (F; J) is a fiber functor from category C to Vec and every X ∈ C has a right regular dual. To conclude, we give a weak reconstruction theorem for a kind of weak Hopf algebra.
引用
收藏
页码:19 / 33
页数:14
相关论文
共 50 条
  • [1] Weak rigid monoidal category
    Cao, Haijun
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 19 - 33
  • [2] A Clifford algebra is a weak Hopf algebra in a suitable symmetric monoidal category
    Bulacu, Daniel
    JOURNAL OF ALGEBRA, 2011, 332 (01) : 244 - 284
  • [3] The category of modules over a monoidal category: Abelian or not?
    Ardizzoni A.
    Annali dell’Università di Ferrara, 2004, 50 (1): : 167 - 185
  • [4] The Monoidal Category of Yetter-Drinfeld Modules over a Weak Braided Hopf Algebra
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    Soneira Calvo, C.
    ALGEBRA COLLOQUIUM, 2015, 22 : 871 - 902
  • [5] Characterization of a category for monoidal topology
    Solovyov, Sergey A.
    ALGEBRA UNIVERSALIS, 2015, 74 (3-4) : 389 - 410
  • [6] On the unit of a monoidal model category
    Muro, Fernando
    TOPOLOGY AND ITS APPLICATIONS, 2015, 191 : 37 - 47
  • [7] A braided T-category over weak monoidal Hom-Hopf algebras
    Liu, Guohua
    Wang, Wei
    Wang, Shuanhong
    Zhang, Xiaohui
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (08)
  • [8] THE CATEGORY OF NECKLACES IS REEDY MONOIDAL
    Marques, Violeta Borges
    Mertens, Arne
    THEORY AND APPLICATIONS OF CATEGORIES, 2024, 41
  • [9] Characterization of a category for monoidal topology
    Sergey A. Solovyov
    Algebra universalis, 2015, 74 : 389 - 410
  • [10] Nilpotent Category of Monoidal Category and Tensor–Hom Adjunction
    Yan’en Ni
    Yunfei Tan
    Yunfei Yi
    Yuehui Zhang
    Bulletin of the Iranian Mathematical Society, 2023, 49