Nonlinear ergodic theorems for amenable semigroups of nonexpansive mappings in Hadamard spaces

被引:0
|
作者
Bijan Ahmadi Kakavandi
机构
[1] Shahid Beheshti University,Department of Mathematics
关键词
Nonpositive curvature; Hadamard space; nonexpansive semigroup; fixed point; -convergence; nonlinear ergodic theorem; invariant mean; 47H20; 47H25; 53C23;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize some theorems for continuous representation of an amenable semitopological semigroup S as nonexpansive maps on Hilbert spaces to complete CAT(0) spaces, i.e., Hadamard spaces. For proper Hadamard space, we prove the convergence of asymptotically invariant means of the bounded trajectories. In the nonproper case, adding a suitable condition on the means and assuming S is a locally compact Hausdorff semigroup, we prove Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} -convergence of asymptotically invariant means of the bounded trajectories.
引用
收藏
页码:717 / 731
页数:14
相关论文
共 50 条