On Compact Perturbations of Locally Definitizable Selfadjoint Relations in Krein Spaces

被引:0
|
作者
Jussi Behrndt
Peter Jonas
机构
[1] Technische Universität Berlin,Fachbereich Mathematik, MA 6
来源
关键词
Primary 47B50; Secondary 47A55; 47B40; Selfadjoint operators in Krein spaces; compact perturbations; definitizable operators; spectral points of positive and negative type; selfadjoint linear relations;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove two perturbation results for a selfadjoint operator A in a Krein space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{H} $$ \end{document} which can roughly be described as follows: (1) If Δ is an open subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\ifmmode\expandafter\overline\else\expandafter\=\fi{\mathbb{R}}} $$ \end{document} and all spectral subspaces for A corresponding to compact subsets of Δ have finite rank of negativity, the same is true for a selfadjoint operator B in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{H} $$ \end{document} for which the difference of the resolvents of A and B is compact. (2) The property that there exists some neighbourhood Δ∞ of ∞ such that the restriction of A to a spectral subspace for A corresponding to Δ∞ is a nonnegative operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{H}, $$ \end{document} is preserved under relative \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{G}_p $$ \end{document} perturbations in form sense if the resulting operator is again selfadjoint. The assertion (1) is proved for selfadjoint relations A and B. (1) and (2) generalize some known results.
引用
收藏
页码:17 / 44
页数:27
相关论文
共 50 条