Averages of shifted convolutions of general divisor sums involving Hecke eigenvalues

被引:0
|
作者
Dan Wang
机构
[1] Qilu University of Technology (Shandong Academy of Sciences),School of Mathematics and Statistics
关键词
Shifted convolutions; Hecke eigenvalue; Mean square estimate in short interval; Truncated Tong-type formula; 11F30; 11F37; 11M41; 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose ∑n=1∞a(n)n-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n=1}^{\infty }a(n) n^{-s}$$\end{document} be a Dirichlet series in the Selberg class of degree d and let E(x) be the arithmetical error term of ∑n⩽xa(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n\leqslant x}a(n)$$\end{document}. By the truncated Tong-type formula of E(x), we can get two kinds of the mean square estimates of E(x) in short intervals of Jutila’s type. Using the estimates, we are able to improve some previous results established by Lü and Wang [9].
引用
收藏
页码:443 / 453
页数:10
相关论文
共 50 条