Ergodic Theory of Generic Continuous Maps

被引:0
|
作者
Flavio Abdenur
Martin Andersson
机构
[1] PUC-Rio de Janeiro,Departamento de Matemática
[2] Universidade Federal Fluminense (GMA),undefined
来源
关键词
Lebesgue Measure; Physical Measure; Periodic Point; Ergodic Property; Trapping Region;
D O I
暂无
中图分类号
学科分类号
摘要
We study the ergodic properties of generic continuous dynamical systems on compact manifolds. As a main result we prove that generic homeomorphisms have convergent Birkhoff averages under continuous observables at Lebesgue almost every point. In spite of this, when the underlying manifold has dimension greater than one, generic homeomorphisms have no physical measures—a somewhat strange result which stands in sharp contrast to current trends in generic differentiable dynamics. Similar results hold for generic continuous maps.
引用
收藏
页码:831 / 855
页数:24
相关论文
共 50 条
  • [1] Ergodic Theory of Generic Continuous Maps
    Abdenur, Flavio
    Andersson, Martin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (03) : 831 - 855
  • [2] ERGODIC OPTIMIZATION FOR GENERIC CONTINUOUS FUNCTIONS
    Morris, Ian D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (01) : 383 - 388
  • [3] Ergodic Theory on Anosov Maps
    孙文祥
    数学进展, 1995, (03) : 265 - 266
  • [4] Constrained ergodic optimization for generic continuous functions
    Motonaga, Shoya
    Shinoda, Mao
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (03): : 408 - 423
  • [5] Generic continuous spectrum for ergodic Schrodinger operators
    Boshernitzan, Michael
    Damanik, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (03) : 647 - 662
  • [6] Generic Continuous Spectrum for Ergodic Schrödinger Operators
    Michael Boshernitzan
    David Damanik
    Communications in Mathematical Physics, 2008, 283
  • [7] Dimensions of fibers of generic continuous maps
    Richárd Balka
    Monatshefte für Mathematik, 2017, 184 : 339 - 378
  • [8] Dimensions of fibers of generic continuous maps
    Balka, Richard
    MONATSHEFTE FUR MATHEMATIK, 2017, 184 (03): : 339 - 378
  • [9] CONTRIBUTION TO THE ERGODIC THEORY OF ROBUSTLY TRANSITIVE MAPS
    Lizana, Cristina
    Pinheiro, Vilton
    Varandas, Paulo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) : 353 - 365
  • [10] Similarity and ergodic theory of positive linear maps
    Popescu, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 561 : 87 - 129