The Maximum Spectral Radius of Graphs without Spanning Linear Forests

被引:0
|
作者
Lin-Peng Zhang
Ligong Wang
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
[2] Northwestern Polytechnical University,Xi’an
[3] Optimization and Artificial Intelligence,Budapest Joint Research Center for Combinatorics
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Spectral extremal graph theory; Kelmans transformation; Linear forest; Star forest; 05C35; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Given a family F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of graphs, a graph G is called F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free if G contains none of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} as its subgraph. The following problem is one of the most concerned problems in spectral extremal graph theory: what is the maximum spectral radius of an n-vertex F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}-free graph? If each connected component of a graph is either a path (star) or an isolated vertex, then we call it a linear (star) forest. Denote by Ln,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_{n,k}$$\end{document} and Sn,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_{n,k}$$\end{document} the family of all n-vertex linear forests and star forests with k edges, respectively. In this paper, we obtain the maximum spectral radius of an n-vertex Ln,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_{n,k}$$\end{document}-free graph and characterize the extremal graphs based on Kelmans transformation. Also, we obtain the maximum spectral radius of an n-vertex Sn,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}_{n,k}$$\end{document}-free graph and characterize the unique extremal graph.
引用
收藏
相关论文
共 50 条
  • [1] The Maximum Spectral Radius of Graphs without Spanning Linear Forests
    Zhang, Lin-Peng
    Wang, Ligong
    [J]. GRAPHS AND COMBINATORICS, 2023, 39 (01)
  • [2] On the A?-spectral radius of graphs without linear forests
    Chen, Ming-Zhu
    Liu, A-Ming
    Zhang, Xiao-Dong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 450
  • [3] The Maximum Spectral Radius of Graphs Without Friendship Subgraphs
    Cioaba, Sebastian
    Feng, Lihua
    Tait, Michael
    Zhang, Xiao-Dong
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 19
  • [4] Spectral radius and spanning trees of graphs
    Ao, Guoyan
    Liu, Ruifang
    Yuan, Jinjiang
    [J]. DISCRETE MATHEMATICS, 2023, 346 (08)
  • [5] The signless Laplacian spectral radius of graphs with forbidding linear forests
    Chen, Ming-Zhu
    Liu, A-Ming
    Zhang, Xiao-Dong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 591 : 25 - 43
  • [6] On graphs with maximum Harary spectral radius
    Huang, Fei
    Li, Xueliang
    Wang, Shujing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 937 - 945
  • [7] On the maximum spectral radius of multipartite graphs
    Wu, Jian
    Zhao, Haixia
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 850 - 855
  • [8] On the spectral radius of graphs without a gem
    Zhang, Yanting
    Wang, Ligong
    [J]. DISCRETE MATHEMATICS, 2024, 347 (11)
  • [9] THE MAXIMUM SPECTRAL RADIUS OF GRAPHS WITH A LARGE CORE
    He, Xiaocong
    Feng, Lihua
    Stevanovic, Dragan
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 78 - 89
  • [10] The maximum spectral radius of irregular bipartite graphs
    Xue, Jie
    Liu, Ruifang
    Guo, Jiaxin
    Shu, Jinlong
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2023, 142