Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression

被引:0
|
作者
Jennifer F. Bobb
Birgit Claus Henn
Linda Valeri
Brent A. Coull
机构
[1] Biostatistics Unit,Department of Biostatistics
[2] Kaiser Permanente Washington Health Research Institute,Department of Environmental Health
[3] University of Washington,Psychiatric Biostatistics Laboratory
[4] Boston University School of Public Health,Department of Biostatistics
[5] McLean Hospital,undefined
[6] Harvard T H Chan School of Public Health,undefined
来源
关键词
Multiple exposures; Mixtures; Exposure-response; Variable selection; Health risk estimation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 15 条
  • [1] Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression
    Bobb, Jennifer F.
    Henn, Birgit Claus
    Valeri, Linda
    Coull, Brent A.
    ENVIRONMENTAL HEALTH, 2018, 17
  • [2] Combined effects of multiple metals on hearing loss: A Bayesian kernel machine regression approach
    Liang, Mingming
    Guo, Xianwei
    Ding, Xiuxiu
    Song, Qiuxia
    Wang, Hao
    Li, Ning
    Su, Wanying
    Liang, Qiwei
    Sun, Yehuan
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 247
  • [3] Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures
    Bobb, Jennifer F.
    Valeri, Linda
    Claus Henn, Birgit
    Christiani, David C.
    Wright, Robert O.
    Mazumdar, Maitreyi
    Godleski, John J.
    Coull, Brent A.
    BIOSTATISTICS, 2015, 16 (03) : 493 - 508
  • [4] Health effects of air pollutant mixtures on overall mortality among the elderly population using Bayesian kernel machine regression (BKMR)
    Li, Haomin
    Deng, Wenying
    Small, Raphael
    Schwartz, Joel
    Liu, Jeremiah
    Shi, Liuhua
    CHEMOSPHERE, 2022, 286
  • [5] Detecting univariate, bivariate, and overall effects of drug mixtures using Bayesian kernel machine regression
    Bather, Jemar R.
    Han, Larry
    Bennett, Alex S.
    Elliott, Luther
    Goodman, Melody S.
    AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE, 2024, 50 (05): : 623 - 630
  • [6] Analyzing Clinical Trial Data via the Bayesian Multiple Logistic Random Effects Model
    Bartolucci, A. A.
    Singh, K. P.
    Bae, S. J.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 2861 - 2866
  • [7] Prenatal Metal Concentrations and Childhood Cardiometabolic Risk Using Bayesian Kernel Machine Regression to Assess Mixture and Interaction Effects
    Kupsco, Allison
    Kioumourtzoglou, Marianthi-Anna
    Just, Allan C.
    Amarasiriwardena, Chitra
    Estrada-Gutierrez, Guadalupe
    Cantoral, Alejandra
    Sanders, Alison P.
    Braun, Joseph M.
    Svensson, Katherine
    Brennan, Kasey J. M.
    Oken, Emily
    Wright, Robert O.
    Baccarelli, Andrea A.
    Tellez-Rojo, Maria M.
    EPIDEMIOLOGY, 2019, 30 (02) : 263 - 273
  • [8] Sex-Specific Effects of Combined Heavy Metal Exposure on Blood Pressure: A Bayesian Kernel Machine Regression Analysis
    Kim, In-Gwon
    Hong, Seonmi
    Yim, Sojeong
    Jeong, Jang-Hun
    Choi, Kyunghi
    Lee, Ju-Hee
    Hong, Young-Seoub
    Eom, Sang-Yong
    Kim, Heon
    Kim, Yong-Dae
    ATMOSPHERE, 2024, 15 (10)
  • [9] Unveiling the interaction and combined effects of multiple metals/ metalloids exposure to TNF-α and kidney function in adults using bayesian kernel machine regression and quantile-based G-computation
    Luo, Kuei-Hau
    Tu, Hung-Pin
    Chung, Yong-Chuan
    Huang, Min-Hsin
    Yang, Chen-Cheng
    Chen, Tzu-Hua
    Yang, Cheng-Hong
    Chuang, Hung-Yi
    JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY, 2024, 86
  • [10] Novel Pediatric Height Outlier Detection Methodology for Electronic Health Records via Machine Learning With Monotonic Bayesian Additive Regression Trees
    Sparapani, Rodney A.
    Teng, Bi Q.
    Hilbrands, Julia
    Pipkorn, Rebecca
    Feuling, Mary Beth
    Goday, Praveen S.
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 2022, 75 (02): : 210 - 214