Standard Bases for Tensor Products of Exterior Powers

被引:0
|
作者
Roger Howe
Sangjib Kim
Soo Teck Lee
机构
[1] Texas A&M University,Department of Teaching, Learning and Culture
[2] Korea University,Department of Mathematics
[3] National University of Singapore,Department of Mathematics
来源
关键词
General linear group; Tensor product; Exterior powers; Standard basis;
D O I
暂无
中图分类号
学科分类号
摘要
For n ≥ a ≥ b, the tensor product V=∧a(ℂn)⊗∧b(ℂn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V=\bigwedge ^{a}(\mathbb {C}^{n})\otimes \bigwedge ^{b}(\mathbb {C}^{n})$\end{document} has a natural filtration 0 = Vm+ 1 ⊆ Vm ⊆⋯ ⊆ V2 ⊆ V1 ⊆ V0 = V of Gln submodules where m = min(n − a,b) and V/V1 is the Cartan product. For each 1 ≤ u ≤ m, we construct a basis for Vu and a basis for the quotient V/Vu. The elements in the basis for Vu can be regarded as a generalization of the quadratic relations, and the elements in the basis for V/Vu are parametrized by a set of skew tableaux satisfying a condition that cleanly extends the well known semistandardness condition defining a basis for V/V1.
引用
收藏
页码:715 / 738
页数:23
相关论文
共 50 条