The Impact of Nitrogen Placement and Tillage on NO, N2O, CH4 and CO2 Fluxes from a Clay Loam Soil

被引:1
|
作者
Xuejun J. Liu
Arvin R. Mosier
Ardell D. Halvorson
Fusuo S. Zhang
机构
[1] China Agricultural University,College of Resources and Environmental Sciences
[2] University of Florida,Agricultural and Biological Engineering Department
[3] USDA-ARS,undefined
来源
Plant and Soil | 2006年 / 280卷
关键词
application depth; GWP; nitrogen fertilizer; no-till; trace gas emissions;
D O I
暂无
中图分类号
学科分类号
摘要
To evaluate the impact of N placement depth and no-till (NT) practice on the emissions of NO, N2O, CH4 and CO2 from soils, we conducted two N placement experiments in a long-term tillage experiment site in northeastern Colorado in 2004. Trace gas flux measurements were made 2–3 times per week, in zero-N fertilizer plots that were cropped continuously to corn (Zea mays L.) under conventional-till (CT) and NT. Three N placement depths, replicated four times (5, 10 and 15 cm in Exp. 1 and 0, 5 and 10 cm in Exp. 2, respectively) were used. Liquid urea–ammonium nitrate (UAN, 224 kg N ha−1) was injected to the desired depth in the CT- or NT-soils in each experiment. Mean flux rates of NO, N2O, CH4 and CO2 ranged from 3.9 to 5.2 μg N m−2 h−1, 60.5 to 92.4 μg N m−2 h−1, −0.8 to 0.5 μg C m−2 h−1, and 42.1 to 81.7 mg C m−2 h−1 in both experiments, respectively. Deep N placement (10 and 15 cm) resulted in lower NO and N2O emissions compared with shallow N placement (0 and 5 cm) while CH4 and CO2 emissions were not affected by N placement in either experiment. Compared with N placement at 5 cm, for instance, averaged N2O emissions from N placement at 10 cm were reduced by more than 50% in both experiments. Generally, NT decreased NO emission and CH4 oxidation but increased N2O emissions compared with CT irrespective of N placement depths. Total net global warming potential (GWP) for N2O, CH4 and CO2 was reduced by deep N placement only in Exp. 1 but was increased by NT in both experiments. The study results suggest that deep N placement (e.g., 10 cm) will be an effective option for reducing N oxide emissions and GWP from both fertilized CT- and NT-soils.
引用
收藏
页码:177 / 188
页数:11
相关论文
共 50 条
  • [1] The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil
    Liu, XJ
    Mosier, AR
    Halvorson, AD
    Zhang, FS
    [J]. PLANT AND SOIL, 2006, 280 (1-2) : 177 - 188
  • [2] Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland
    Ball, BC
    Scott, A
    Parker, JP
    [J]. SOIL & TILLAGE RESEARCH, 1999, 53 (01): : 29 - 39
  • [3] Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil
    Hawthorne, Iain
    Johnson, Mark S.
    Jassal, Rachhpal S.
    Black, T. Andrew
    Grant, Nicholas J.
    Smukler, Sean M.
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 192 : 203 - 214
  • [4] Soil N2O, CH4, and CO2 Fluxes in Forest, Grassland, and Tillage/No-Tillage Croplands in French Guiana (Amazonia)
    Petitjean, Caroline
    Le Gall, Cecile
    Pontet, Celia
    Fujisaki, Kenji
    Garric, Bernard
    Horth, Jean-Claude
    Henault, Catherine
    Perrin, Anne-Sophie
    [J]. SOIL SYSTEMS, 2019, 3 (02) : 1 - 20
  • [5] CO2, CH4 and N2O fluxes from soil of a burned grassland in Central Africa
    Castaldi, S.
    de Grandcourt, A.
    Rasile, A.
    Skiba, U.
    Valentini, R.
    [J]. BIOGEOSCIENCES, 2010, 7 (11) : 3459 - 3471
  • [6] The impact of harvesting native forests on vegetation and soil C stocks, and soil CO2, N2O and CH4 fluxes
    Page, K. L.
    Dalal, R. C.
    Raison, R. J.
    [J]. AUSTRALIAN JOURNAL OF BOTANY, 2011, 59 (07) : 653 - 668
  • [7] Decadal variability of soil CO2, NO, N2O, and CH4 fluxes at the Hoglwald Forest, Germany
    Luo, G. J.
    Brueggemann, N.
    Wolf, B.
    Gasche, R.
    Grote, R.
    Butterbach-Bahl, K.
    [J]. BIOGEOSCIENCES, 2012, 9 (05) : 1741 - 1763
  • [8] CO2, CH4 and N2O fluxes from soybean and barley double-cropping in relation to tillage in Japan
    Nouchi, I.
    Yonemura, S.
    [J]. PHYTON-ANNALES REI BOTANICAE, 2005, 45 (04) : 327 - 338
  • [9] Fluxes of CO2, CH4 and N2O from alpine grassland in the Tibetan Plateau
    Zhiyong Pei
    Hua Ouyang
    Caiping Zhou
    Xingliang Xu
    [J]. Journal of Geographical Sciences, 2003, 13 (1) : 27 - 34
  • [10] Fluxes of CO2,CH4 and N2O from alpine grassland in the Tibetan Plateau
    PEI Zhiyong
    [J]. Journal of Geographical Sciences, 2003, (01) : 25 - 32