Sum-Free Sets and Related Sets

被引:0
|
作者
Yuri Bilu
机构
[1] Instituto de Matemática Pura e Aplicada,
[2] Estrada Dona Castorina; 110,undefined
[3] Jardim Botanico 22.460-320,undefined
[4] Rio de Janeiro,undefined
[5] RJ BRAZIL; Current address: Mathematisches Institut,undefined
[6] Universität Basel; Rheinsprung 21,undefined
[7] CH-4051 Basel,undefined
[8] Switzerland; E-mail: yuri@math.unibas.ch,undefined
来源
Combinatorica | 1998年 / 18卷
关键词
AMS Subject Classification (1991) Classes:  11B75, 11B25, 11P99, 11D04;
D O I
暂无
中图分类号
学科分类号
摘要
of integers is sum-free if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Cameron conjectured that the number of sum-free sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. As a step towards this conjecture, we prove that the number of sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:449 / 459
页数:10
相关论文
共 50 条
  • [1] Sum-free sets and related sets
    Bilu, Y
    [J]. COMBINATORICA, 1998, 18 (04) : 449 - 459
  • [2] Notes on sum-free and related sets
    Cameron, PJ
    Erdos, P
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2): : 95 - 107
  • [3] ON THE NUMBER OF SUM-FREE SETS
    CALKIN, NJ
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 : 141 - 144
  • [4] On the regular sum-free sets
    Wen, Zhi-Xiong
    Zhang, Jie-Meng
    Wu, Wen
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 42 - 56
  • [5] SUM-FREE SETS OF INTEGERS
    ABBOTT, HL
    WANG, ETH
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 67 (01) : 11 - 16
  • [6] SIDON SETS, SUM-FREE SETS AND LINEAR CODES
    Czerwinski, Ingo
    Pott, Alexander
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (02) : 549 - 566
  • [7] SUM-FREE SETS OF INTEGERS WITH A FORBIDDEN SUM
    Haviv, Ishay
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 402 - 424
  • [8] On the density of universal sum-free sets
    Schoen, T
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (03): : 277 - 280
  • [9] Sum-free sets in abelian groups
    Lev, VF
    Luczak, T
    Schoen, T
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2001, 125 (1) : 347 - 367
  • [10] ON SUM-FREE SETS MODULO p
    Deshouillers, Jean-Marc
    Freiman, Gregory A.
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 35 (01) : 51 - 59