Spectrum and analyticity of semigroups arising in elasticity theory and hydromechanics

被引:0
|
作者
Birgit Jacob
Carsten Trunk
机构
[1] Universität Paderborn,Institut für Mathematik
[2] Technische Universität Ilmenau,Institut für Mathematik
来源
Semigroup Forum | 2009年 / 79卷
关键词
Block operator matrices; Analytic semigroups; Spectrum; Second order equations; Accretive operators;
D O I
暂无
中图分类号
学科分类号
摘要
Cauchy problems for a second order linear differential operator equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{z}(t)+A_{0}z(t)+D\dot{z}(t)=0$$\end{document} in a Hilbert space H are studied. Equations of this kind arise for example in elasticity and hydrodynamics. It is assumed that A0 is a uniformly positive operator and that A0−1/2DA0−1/2 is a bounded accretive operator in H. The location of the spectrum of the corresponding semigroup generator is described and sufficient conditions for analyticity are given.
引用
收藏
页码:79 / 100
页数:21
相关论文
共 50 条