Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals

被引:0
|
作者
Qunyi Bie
Haibo Cui
Qiru Wang
Zheng-An Yao
机构
[1] China Three Gorges University,College of Science
[2] Huaqiao University,School of Mathematical Sciences
[3] Sun Yat-Sen University,School of Mathematics
关键词
Liquid crystal flow; Global well-posedness; Critical space; Incompressible limit; 35Q35; 76N10; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678–2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.
引用
收藏
相关论文
共 50 条
  • [1] Global existence and incompressible limit in critical spaces for compressible flow of liquid crystals
    Bie, Qunyi
    Cui, Haibo
    Wang, Qiru
    Yao, Zheng-An
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (05):
  • [2] Incompressible Limit for the Compressible Flow of Liquid Crystals in Lp Type Critical Besov Spaces
    Bie, Qunyi
    Cui, Haibo
    Wang, Qiru
    Yao, Zheng-An
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (06) : 2879 - 2910
  • [3] Global large solutions and incompressible limit for the compressible flow of liquid crystals
    Zhai, Xiaoping
    Chen, Zhi-Min
    APPLICABLE ANALYSIS, 2021, 100 (10) : 2132 - 2146
  • [4] Incompressible Limit for the Compressible Flow of Liquid Crystals
    Wang, Dehua
    Yu, Cheng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (04) : 771 - 786
  • [5] Incompressible Limit for the Compressible Flow of Liquid Crystals
    Dehua Wang
    Cheng Yu
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 771 - 786
  • [6] INCOMPRESSIBLE LIMIT OF A COMPRESSIBLE LIQUID CRYSTALS SYSTEM
    郝乙行
    刘宪高
    ActaMathematicaScientia, 2013, 33 (03) : 781 - 796
  • [7] INCOMPRESSIBLE LIMIT OF A COMPRESSIBLE LIQUID CRYSTALS SYSTEM
    Hao, Yihang
    Liu, Xiangao
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 781 - 796
  • [8] Incompressible limit of the compressible nematic liquid crystal flow
    Ding, Shijin
    Huang, Jinrui
    Wen, Huanyao
    Zi, Ruizhao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (07) : 1711 - 1756
  • [9] Global existence of strong solutions for incompressible hydrodynamic flow of liquid crystals with vacuum
    Ding, Shijin
    Huang, Jinrui
    Xia, Fengguang
    FILOMAT, 2013, 27 (07) : 1247 - 1257
  • [10] GLOBAL EXISTENCE IN CRITICAL SPACES FOR THE COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS
    Chen, Qing
    Tan, Zhong
    KINETIC AND RELATED MODELS, 2012, 5 (04) : 743 - 767