Submaximal Soluble Subgroups of Odd Index in Alternating Groups

被引:0
|
作者
D. O. Revin
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
关键词
complete class of finite groups; subgroup of odd index; alternating group; symmetric group; soluble group; maximal soluble group; submaximal soluble group; 512.542;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document} be a class of finite groups containing a group of even order and closed under subgroups, homomorphic images, and extensions. Then each finite group possesses a maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document}-subgroup of odd index and the study of the subgroups can be reduced to the study of the so-called submaximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document}-subgroups of odd index in simple groups. We prove a theorem that deduces the description of submaximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document}-subgroups of odd index in an alternating group from the description of maximal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathfrak{X}}} $\end{document}-subgroups of odd index in the corresponding symmetric group. In consequence, we classify the submaximal soluble subgroups of odd index in alternating groups up to conjugacy.
引用
收藏
页码:313 / 323
页数:10
相关论文
共 50 条
  • [1] SOLUBLE SUBGROUPS OF ODD INDEX IN ALTERNATING GROUPS
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (02) : 313 - 323
  • [2] Classification of maximal subgroups of odd index in finite groups with alternating socle
    Maslova, N. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (03): : 182 - 184
  • [3] Classification of maximal subgroups of odd index in finite groups with alternating socle
    N. V. Maslova
    Proceedings of the Steklov Institute of Mathematics, 2014, 285 : 136 - 138
  • [4] Classification of maximal subgroups of odd index in finite groups with alternating socle
    Maslova, N. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 : S136 - S138
  • [5] Relatively Maximal Subgroups of Odd Index in Symmetric Groups
    A. S. Vasil’ev
    D. O. Revin
    Algebra and Logic, 2022, 61 : 104 - 124
  • [6] Maximal Solvable Subgroups of Odd Index in Symmetric Groups
    K. Yu. Korotitskii
    D. O. Revin
    Algebra and Logic, 2020, 59 : 114 - 128
  • [7] On the pronormality of subgroups of odd index in finite simple groups
    Kondrat'ev, A. S.
    Maslova, N. V.
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) : 1101 - 1107
  • [8] On the pronormality of subgroups of odd index in finite simple groups
    A. S. Kondrat’ev
    N. V. Maslova
    D. O. Revin
    Siberian Mathematical Journal, 2015, 56 : 1101 - 1107
  • [9] Maximal Solvable Subgroups of Odd Index in Symmetric Groups
    Korotitskii, K. Yu.
    Revin, D. O.
    ALGEBRA AND LOGIC, 2020, 59 (02) : 114 - 128
  • [10] Relatively Maximal Subgroups of Odd Index in Symmetric Groups
    Vasil'ev, A. S.
    Revin, D. O.
    ALGEBRA AND LOGIC, 2022, 61 (02) : 104 - 124