(p, q)-Extended Bessel and Modified Bessel Functions of the First Kind

被引:0
|
作者
Dragana Jankov Maširević
Rakesh K. Parmar
Tibor K. Pogány
机构
[1] University of Osijek,Department of Mathematics
[2] Government College of Engineering and Technology,Department of Mathematics
[3] University of Rijeka,Faculty of Maritime Studies
[4] Óbuda University,Institute of Applied Mathematics
来源
Results in Mathematics | 2017年 / 72卷
关键词
(; )-Extended beta function; (; )-Extended Bessel and modified Bessel functions of the first kind; (; )-Extended Struve and modified Struve functions; Integral representation; Bounding inequalities; Complete monotonicity; Differential–difference equation; Turán type inequality; Primary 33B15; 33C10; 39B62; Secondary 26A48; 33E20;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by certain recent extensions of the Euler’s beta, Gauß hypergeometric and confluent hypergeometric functions (Choi et al. in Honam Math 36(2):339–367, 2014), we introduce (p, q)-extended Bessel function Jν,p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{\nu ,p,q}$$\end{document}, the (p, q)-extended modified Bessel function Iν,p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\nu ,p,q}$$\end{document} of the first kind of order ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} by making use two additional parameters in the integrand, as well as the (p, q)-extended Struve Hν,p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{H}_{\nu ,p,q}$$\end{document} and the modified Struve Lν,p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}_{\nu ,p,q}$$\end{document} functions. Systematic investigation of its properties, among others integral representations, bounding inequalites Mellin transforms (for all newly defined Bessel and Struve functions), complete monotonicity, Turán type inequality, associated non-homogeneous differential-difference equations (exclusively for extended Bessel functions) are presented. Brief presentation of another members of Bessel functions family: spherical, ultraspherical, Delerue hyper-Bessel and their modified counterparts and the Wright generalized Bessel function with links to their (p, q)-extensions are proposed.
引用
收藏
页码:617 / 632
页数:15
相关论文
共 50 条