Inspired by certain recent extensions of the Euler’s beta, Gauß hypergeometric and confluent hypergeometric functions (Choi et al. in Honam Math 36(2):339–367, 2014), we introduce (p, q)-extended Bessel function Jν,p,q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$J_{\nu ,p,q}$$\end{document}, the (p, q)-extended modified Bessel function Iν,p,q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I_{\nu ,p,q}$$\end{document} of the first kind of order ν\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu $$\end{document} by making use two additional parameters in the integrand, as well as the (p, q)-extended Struve Hν,p,q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbf{H}_{\nu ,p,q}$$\end{document} and the modified Struve Lν,p,q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbf{L}_{\nu ,p,q}$$\end{document} functions. Systematic investigation of its properties, among others integral representations, bounding inequalites Mellin transforms (for all newly defined Bessel and Struve functions), complete monotonicity, Turán type inequality, associated non-homogeneous differential-difference equations (exclusively for extended Bessel functions) are presented. Brief presentation of another members of Bessel functions family: spherical, ultraspherical, Delerue hyper-Bessel and their modified counterparts and the Wright generalized Bessel function with links to their (p, q)-extensions are proposed.