Integrable system modelling shallow water waves: Kaup–Boussinesq shallow water system

被引:0
|
作者
A. H. Bhrawy
M. M. Tharwat
M. A. Abdelkawy
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Beni-Suef University,Department of Mathematics, Faculty of Science
来源
Indian Journal of Physics | 2013年 / 87卷
关键词
Extended F-expansion method; Exact solutions; Variant Boussinesq equations; (1 + 1)-Dimensional dispersive long wave equation; Kaup–Boussinesq system; 02.30.Gp; 02.30.Jr; 47.11.0.−j;
D O I
暂无
中图分类号
学科分类号
摘要
Extended F-expansion method is proposed to seek exact solutions of the integrable nonlinear Kaup–Boussinesq shallow water system, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the extended F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously a number of periodic wave solutions expressed by various Jacobi elliptic functions for the integrable nonlinear Kaup-Boussinesq shallow water system. In the limiting cases, the solitary wave solutions are obtained as well.
引用
收藏
页码:665 / 671
页数:6
相关论文
共 50 条
  • [1] Integrable system modelling shallow water waves: Kaup-Boussinesq shallow water system
    Bhrawy, A. H.
    Tharwat, M. M.
    Abdelkawy, M. A.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (07) : 665 - 671
  • [2] On a generalized Broer-Kaup-Kupershmidt system for the long waves in shallow water
    Xin-Yi Gao
    Yong-Jiang Guo
    Wen-Rui Shan
    Nonlinear Dynamics, 2023, 111 : 9431 - 9437
  • [3] On a generalized Broer-Kaup-Kupershmidt system for the long waves in shallow water
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    NONLINEAR DYNAMICS, 2023, 111 (10) : 9431 - 9437
  • [4] A FRACTAL VARIATIONAL THEORY OF THE BROER-KAUP SYSTEM IN SHALLOW WATER WAVES
    Ling, Wei-Wei
    Wu, Pin-Xia
    THERMAL SCIENCE, 2021, 25 (03): : 2051 - 2056
  • [5] On a class of Boussinesq equations for shallow water waves
    Daripa, P
    Dash, RK
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 2, PROCEEDINGS, 2003, 2668 : 764 - 773
  • [6] Dynamics of shallow water waves with Boussinesq equation
    Jawad, A. J. M.
    Petkovic, M. D.
    Laketa, P.
    Biswas, A.
    SCIENTIA IRANICA, 2013, 20 (01) : 179 - 184
  • [7] Oceanic shallow-water investigations on a generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt system
    Gao, Xin-Yi
    PHYSICS OF FLUIDS, 2023, 35 (12)
  • [8] Formation of the undular bores in shallow water generalized Kaup–Boussinesq model
    Gong, Ruizhi
    Wang, Deng-Shan
    Physica D: Nonlinear Phenomena, 2022, 439
  • [9] Delta Shock Waves in the Shallow Water System
    C. O. R. Sarrico
    A. Paiva
    Journal of Dynamics and Differential Equations, 2018, 30 : 1187 - 1198
  • [10] Thinking about the oceanic shallow water via a generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt system
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    CHAOS SOLITONS & FRACTALS, 2022, 164