On the theory of dynamic graph regression problem

被引:0
|
作者
Mostafa Haghir Chehreghani
机构
[1] Amirkabir University of Technology (Tehran Polytechnic),Department of Computer Engineering
来源
关键词
Dynamic graphs; Linear regression; Update-efficient matrix embeddings; Update time; 68T09; 68Rxx; 15-XX;
D O I
暂无
中图分类号
学科分类号
摘要
Most of real-world graphs are dynamic, i.e., they change over time by a sequence of update operations. While the regression problem has been studied for static graphs and temporal graphs, it is not investigated for general dynamic graphs. In this paper, we study the theory of regression over dynamic graphs. First, we present the notion of update-efficient matrix embedding, that defines conditions sufficient for a matrix embedding to be effectively used for dynamic graph regression (under l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_2$$\end{document} norm). Then, we show that given a n×m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times m$$\end{document} update-efficient matrix embedding (e.g., the adjacency matrix) and after an update operation in the graph, the exact optimal solution of linear regression can be updated in O(nm) time for the revised graph. Moreover, we show that this also holds when the matrix embedding is the Laplacian matrix and the update operations are restricted to edge insertion/deletion. In the end, by conducting experiments over synthetic and real-world graphs, we show the high efficiency of updating the solution of graph regression.
引用
下载
收藏
相关论文
共 50 条
  • [1] On the theory of dynamic graph regression problem
    Chehreghani, Mostafa Haghir
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [2] A PROBLEM IN GRAPH THEORY
    ERDOS, P
    HAJNAL, A
    MOON, JW
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (10): : 1107 - &
  • [3] PROBLEM IN GRAPH THEORY
    PETROV, SV
    AUTOMATION AND REMOTE CONTROL, 1976, 37 (05) : 777 - 783
  • [4] The Link Regression Problem in Graph Streams
    Dong, Bowen
    Aggarwal, Charu C.
    Yu, Philip S.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1088 - 1095
  • [5] PROBLEM IN EXTREMAL GRAPH THEORY
    BUSOLINI, DT
    ERDOS, P
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) : 251 - 254
  • [6] RECONSTRUCTION PROBLEM IN GRAPH THEORY
    TUTTE, WT
    BRITISH POLYMER JOURNAL, 1977, 9 (03): : 180 - 183
  • [7] AN EXTREMAL PROBLEM IN GRAPH THEORY
    RAO, AR
    ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (03) : 261 - &
  • [8] Issues of dynamic graph theory
    Kochkarov, A. A.
    Kochkarov, R. A.
    Malinetskii, G. G.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (09) : 1590 - 1596
  • [9] Issues of dynamic graph theory
    A. A. Kochkarov
    R. A. Kochkarov
    G. G. Malinetskii
    Computational Mathematics and Mathematical Physics, 2015, 55 : 1590 - 1596
  • [10] Spectral Graph Theory and the Inverse Eigenvalue Problem of a Graph
    Hogben, L
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 14 : 12 - 31