Pseudomonas aeruginosa biofilm dispersion by the mouse antimicrobial peptide CRAMP

被引:0
|
作者
Yang Zhang
Peng Cheng
Shiyuan Wang
Xiaofen Li
Lianci Peng
Rendong Fang
Jing Xiong
Hui Li
Cui Mei
Jiye Gao
Zhenhui Song
Dengfeng Xu
Lizhi Fu
Chenghong Li
Xueqing Wu
Yuzhang He
Hongwei Chen
机构
[1] Southwest University,College of Veterinary Medicine
[2] Southwest University,Immunology Research Center, Medical Research Institute
[3] National Center of Technology Innovation for Pigs,Department of Infectious Diseases, Sir Run Run Shaw Hospital
[4] Chongqing Academy of Animal Sciences,undefined
[5] Zhejiang University School of Medicine,undefined
来源
关键词
biofilm dispersion; antimicrobial peptide; CRAMP; c-di-GMP; PQS system; omics data;
D O I
暂无
中图分类号
学科分类号
摘要
Pseudomonas aeruginosa (P. aeruginosa) is a known bacterium that produces biofilms and causes severe infection. Furthermore, P. aeruginosa biofilms are extremely difficult to eradicate, leading to the development of chronic and antibiotic-resistant infections. Our previous study showed that a cathelicidin-related antimicrobial peptide (CRAMP) inhibits the formation of P. aeruginosa biofilms and markedly reduces the biomass of preformed biofilms, while the mechanism of eradicating bacterial biofilms remains elusive. Therefore, in this study, the potential mechanism by which CRAMP eradicates P. aeruginosa biofilms was investigated through an integrative analysis of transcriptomic, proteomic, and metabolomic data. The omics data revealed CRAMP functioned against P. aeruginosa biofilms by different pathways, including the Pseudomonas quinolone signal (PQS) system, cyclic dimeric guanosine monophosphate (c-di-GMP) signalling pathway, and synthesis pathways of exopolysaccharides and rhamnolipid. Moreover, a total of 2914 differential transcripts, 785 differential proteins, and 280 differential metabolites were identified. A series of phenotypic validation tests demonstrated that CRAMP reduced the c-di-GMP level with a decrease in exopolysaccharides, especially alginate, in P. aeruginosa PAO1 biofilm cells, improved bacterial flagellar motility, and increased the rhamnolipid content, contributing to the dispersion of biofilms. Our study provides new insight into the development of CRAMP as a potentially effective antibiofilm dispersant.
引用
收藏
相关论文
共 50 条
  • [1] Pseudomonas aeruginosa biofilm dispersion by the mouse antimicrobial peptide CRAMP
    Zhang, Yang
    Cheng, Peng
    Wang, Shiyuan
    Li, Xiaofen
    Peng, Lianci
    Fang, Rendong
    Xiong, Jing
    Li, Hui
    Mei, Cui
    Gao, Jiye
    Song, Zhenhui
    Xu, Dengfeng
    Fu, Lizhi
    Li, Chenghong
    Wu, Xueqing
    He, Yuzhang
    Chen, Hongwei
    [J]. VETERINARY RESEARCH, 2022, 53 (01) : 80
  • [2] Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide
    Louis, Melissande
    Clamens, Thomas
    Tahrioui, Ali
    Desriac, Florie
    Rodrigues, Sophie
    Rosay, Thibaut
    Harmer, Nicholas
    Diaz, Suraya
    Barreau, Magalie
    Racine, Pierre-Jean
    Kipnis, Eric
    Grandjean, Teddy
    Vieillard, Julien
    Bouffartigues, Emeline
    Cornelis, Pierre
    Chevalier, Sylvie
    Feuilloley, Marc G. J.
    Lesouhaitier, Olivier
    [J]. ADVANCED SCIENCE, 2022, 9 (07)
  • [3] Biofilm dispersion in Pseudomonas aeruginosa
    Kim, Soo-Kyoung
    Lee, Joon-Hee
    [J]. JOURNAL OF MICROBIOLOGY, 2016, 54 (02) : 71 - 85
  • [4] Biofilm dispersion in Pseudomonas aeruginosa
    Soo-Kyoung Kim
    Joon-Hee Lee
    [J]. Journal of Microbiology, 2016, 54 : 71 - 85
  • [5] Effects of a novel anti-biofilm peptide CRAMP combined with antibiotics on the formation of Pseudomonas aeruginosa biofilms
    Zhang, Yang
    He, Xing
    Cheng, Peng
    Li, Xiaofen
    Wang, Shiyuan
    Xiong, Jing
    Li, Hui
    Wang, Zhiying
    Yi, Huashan
    Du, Hongxu
    Liu, Juan
    Chen, Hongwei
    [J]. MICROBIAL PATHOGENESIS, 2021, 152
  • [6] Derivatives of the Mouse Cathelicidin-Related Antimicrobial Peptide (CRAMP) Inhibit Fungal and Bacterial Biofilm Formation
    De Brucker, Katrijn
    Delattin, Nicolas
    Robijns, Stijn
    Steenackers, Hans
    Verstraeten, Natalie
    Landuyt, Bart
    Luyten, Walter
    Schoofs, Liliane
    Dovgan, Barbara
    Froehlich, Mirjam
    Michiels, Jan
    Vanderleyden, Jos
    Cammue, Bruno P. A.
    Thevissen, Karin
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (09) : 5395 - 5404
  • [7] EFFICACY OF AN ANTIMICROBIAL PEPTIDE MIMIC AGAINST DRUG-RESISTANT PSEUDOMONAS AERUGINOSA IN A BIOFILM FORM
    Savage, P. B.
    Lew, C. R.
    Carl, G.
    [J]. PEDIATRIC PULMONOLOGY, 2014, 49 : 313 - 313
  • [8] Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa
    Nagant, Carole
    Pitts, Betsey
    Stewart, Philip S.
    Feng, Yanshu
    Savage, Paul B.
    Dehaye, Jean-Paul
    [J]. MICROBIOLOGYOPEN, 2013, 2 (02): : 318 - 325
  • [9] Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells
    Lashua, Lauren P.
    Melvin, Jeffrey A.
    Deslouches, Berthony
    Pilewski, Joseph M.
    Montelaro, Ronald C.
    Bomberger, Jennifer M.
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2016, 71 (08) : 2200 - 2207
  • [10] Deficient Lipid A Remodeling by the arnB Gene Promotes Biofilm Formation in Antimicrobial Peptide Susceptible Pseudomonas aeruginosa
    Segev-Zarko, Li-av
    Kapach, Gal
    Josten, Michaele
    Klug, Yoel Alexander
    Sahl, Hans-Georg
    Shai, Yechiel
    [J]. BIOCHEMISTRY, 2018, 57 (13) : 2024 - 2034