A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods

被引:0
|
作者
Tao Lin
Qing Yang
Xu Zhang
机构
[1] Virginia Tech,Department of Mathematics
[2] Shandong Normal University,School of Mathematical Science
[3] Purdue University,Department of Mathematics
来源
关键词
Immersed finite element; Discontinuous Galerkin; Cartesian mesh; Interface problems; Local mesh refinement;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mesh refinement in the Cartesian mesh structure for interface problems. Numerical results are provided to demonstrate the convergence and local mesh refinement features of these DG-IFE methods.
引用
收藏
页码:875 / 894
页数:19
相关论文
共 50 条