Quasi-Exactly Solvable Generalizations of Calogero–Sutherland Models

被引:0
|
作者
D. Gómez-Ullate
A. González-López
M. A. Rodríguez
机构
[1] Universidad Complutense,Departamento de Física Teórica II, Facultad de Ciencias Físicas
来源
关键词
Root System; Solvable Model; Lower Excitation; Sutherland Model; Solvable Generalization;
D O I
暂无
中图分类号
学科分类号
摘要
A generalization of the procedures for constructing quasi-exactly solvable models with one degree of freedom to (quasi-)exactly solvable models of N particles on a line allows deriving many well-known models in the framework of a new approach that does not use root systems. In particular, a BCN elliptic Calogero–Sutherland model is found among the quasi-exactly solvable models. For certain values of the paramaters of this model, we can explicitly calculate the ground state and the lowest excitations.
引用
收藏
页码:719 / 728
页数:9
相关论文
共 50 条
  • [1] Quasi-exactly solvable generalizations of Calogero-Sutherland models
    Gómez-Ullate, D
    González-López, A
    Rodríguez, MA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 719 - 728
  • [2] A survey of quasi-exactly solvable systems and spin Calogero-Sutherland models
    Finkel, F
    Gómez-Ullate, D
    González-López, A
    Rodríguez, MA
    Zhdanov, R
    [J]. SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 173 - 186
  • [3] Periodic Quasi-Exactly Solvable Models
    S. Sree Ranjani
    A. K. Kapoor
    P. K. Panigrahi
    [J]. International Journal of Theoretical Physics, 2005, 44 : 1167 - 1176
  • [4] Periodic quasi-exactly solvable models
    Ranjani, SS
    Kapoor, AK
    Panigrahi, PK
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (08) : 1167 - 1176
  • [5] Quasi-exactly solvable matrix models
    Zhdanov, RZ
    [J]. PHYSICS LETTERS B, 1997, 405 (3-4) : 253 - 256
  • [6] QUASI-EXACTLY SOLVABLE MODELS IN QUANTUM CHEMISTRY
    Karwowski, Jacek
    Szewc, Kamil
    [J]. COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 2008, 73 (10) : 1372 - 1390
  • [7] Quasi-exactly solvable models in nonlinear optics
    Alvarez, G
    Finkel, F
    González-López, A
    Rodríguez, MA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8705 - 8713
  • [8] On algebraic classification of quasi-exactly solvable matrix models
    Zhdanov, RZ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8761 - 8770
  • [9] Quasi-exactly solvable models based on special functions
    Dolya, S. N.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [10] Quasi-exactly solvable quasinormal modes
    Ho, Choon-Lin
    Cho, Hing-Tong
    [J]. PARTICLES, STRINGS, AND COSMOLOGY, 2007, 957 : 409 - 412